ﻻ يوجد ملخص باللغة العربية
We introduce and demonstrate a scheme for eliminating the inhomogeneous dephasing of a collective quantum state. The scheme employs off-resonant fields that continuously dress the collective state with an auxiliary sensor state, which has an enhanced and opposite sensitivity to the same source of inhomogeneity. We derive the optimal conditions under which the dressed state is fully protected from dephasing, when using either one or two dressing fields. The latter provides better protection, circumvents qubit phase rotation, and suppresses the sensitivity to drive noise. We further derive expressions for all residual, higher-order, sensitivities. We experimentally study the scheme by protecting a collective excitation of an atomic ensemble, where inhomogeneous dephasing originates from thermal motion. Using photon storage and retrieval, we demonstrate complete suppression of inhomogeneous dephasing and consequently a prolonged memory time. Our scheme may be applied to eliminate motional dephasing in other systems, improving the performance of quantum gates and memories with neutral atoms. It is also generally applicable to various gas, solid, and engineered systems, where sensitivity to variations in time, space, or other domains limits possible scale-up of the system.
The goal of quantum metrology is the precise estimation of parameters using quantum properties such as entanglement. This estimation usually consists of three steps: state preparation, time evolution during which information of the parameters is enco
We advocate a Bayesian approach to optimal quantum frequency estimation - an important issue for future quantum enhanced atomic clock operation. The approach provides a clear insight into the interplay between decoherence and the extent of the prior
Entanglement between two quantum systems is a resource in quantum information, but dissipation usually destroys it. In this article we consider two qubits without direct interaction and we show that, even in cases where the open system dynamics destr
In this work an exactly solvable model of N two-level systems interacting with a single bosonic dephasing reservoir is considered to unravel the role played by collective non-Markovian dephasing. We show that phase estimation with entangled states fo
Most studies of collective dephasing for bipartite as well as multipartite quantum systems focus on a very specific orientation of magnetic field, that is, z-orientation. However, in practical situations, there are always small fluctuations in stocha