ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal Evolution of Uranus with a Frozen Interior

78   0   0.0 ( 0 )
 نشر من قبل Lars Stixrude
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The intrinsic luminosity of Uranus is a factor of 10 less than that of Neptune, an observation that standard giant planetary evolution models, which assume negligible viscosity, fail to capture. Here we show that more than half of the interior of Uranus is likely to be in a solid state, and that thermal evolution models that account for this high viscosity region satisfy the observed faintness of Uranus by storing accretional heat deep in the interior. A frozen interior also explains the quality factor of Uranus required by the evolution of the orbits of its satellites.

قيم البحث

اقرأ أيضاً

70 - A. Vazan , R. Helled 2019
The low luminosity of Uranus is a long-standing challenge in planetary science. Simple adiabatic models are inconsistent with the measured luminosity, which indicates that Uranus is non-adiabatic because it has thermal boundary layers and/or conducti ve regions. A gradual composition distribution acts as a thermal boundary to suppress convection and slow down the internal cooling. Here we investigate whether composition gradients in the deep interior of Uranus can explain its low luminosity, the required composition gradient, and whether it is stable for convective mixing on a timescale of some billion years. We varied the primordial composition distribution and the initial energy budget of the planet, and chose the models that fit the currently measured properties (radius, luminosity, and moment of inertia) of Uranus. We present several alternative non-adiabatic internal structures that fit the Uranus measurements. We found that convective mixing is limited to the interior of Uranus, and a composition gradient is stable and sufficient to explain its current luminosity. As a result, the interior of Uranus might still be very hot, in spite of its low luminosity. The stable composition gradient also indicates that the current internal structure of Uranus is similar to its primordial structure. Moreover, we suggest that the initial energy content of Uranus cannot be greater than 20% of its formation (accretion) energy. We also find that an interior with a mixture of ice and rock, rather than separated ice and rock shells, is consistent with measurements, suggesting that Uranus might not be differentiated. Our models can explain the luminosity of Uranus, and they are also consistent with its metal-rich atmosphere and with the predictions for the location where its magnetic field is generated.
The evolution of Earths early atmosphere and the emergence of habitable conditions on our planet are intricately coupled with the development and duration of the magma ocean phase during the early Hadean period (4 to 4.5 Ga). In this paper, we deal w ith the evolution of the steam atmosphere during the magma ocean period. We obtain the outgoing longwave radiation using a line-by-line radiative transfer code GARLIC. Our study suggests that an atmosphere consisting of pure H$_{2}$O, built as a result of outgassing extends the magma ocean lifetime to several million years. The thermal emission as a function of solidification timescale of magma ocean is shown. We study the effect of thermal dissociation of H$_{2}$O at higher temperatures by applying atmospheric chemical equilibrium which results in the formation of H$_{2}$ and O$_{2}$ during the early phase of the magma ocean. A 1-6% reduction in the OLR is seen. We also obtain the effective height of the atmosphere by calculating the transmission spectra for the whole duration of the magma ocean. An atmosphere of depth ~100 km is seen for pure water atmospheres. The effect of thermal dissociation on the effective height of the atmosphere is also shown. Due to the difference in the absorption behavior at different altitudes, the spectral features of H$_{2}$ and O$_{2}$ are seen at different altitudes of the atmosphere. Therefore, these species along with H$_{2}$O have a significant contribution to the transmission spectra and could be useful for placing observational constraints upon magma ocean exoplanets.
84 - Leigh N. Fletcher 2021
Uranus provides a unique laboratory to test our understanding of planetary atmospheres under extreme conditions. Multi-spectral observations from Voyager, ground-based observatories, and space telescopes have revealed a delicately banded atmosphere p unctuated by storms, waves, and dark vortices, evolving slowly under the seasonal influence of Uranus extreme axial tilt. Condensables like methane and hydrogen sulphide play a crucial role in shaping circulation, clouds, and storm phenomena via latent heat release through condensation, strong equator-to-pole gradients suggestive of equatorial upwelling and polar subsidence, and through forming stabilising layers that may decouple different circulation and convective regimes as a function of depth. Weak vertical mixing and low atmospheric temperatures associated with Uranus negligible internal heat means that stratospheric methane photochemistry occurs in a unique high-pressure regime, decoupled from the influx of external oxygen. The low homopause also allows for the formation of an extensive ionosphere. Finally, the atmosphere provides a window on the bulk composition of Uranus - the ice-to-rock ratio, supersolar elemental and isotopic enrichments inferred from remote sensing and future textit{in situ} measurements - providing key insights into its formation and subsequent migration. This review reveals the state of our knowledge of the time-variable circulation, composition, meteorology, chemistry, and clouds on this enigmatic `Ice Giant, summarising insights from more than three decades of observations, and highlighting key questions for the next generation of planetary missions. As a hydrogen-dominated, intermediate-sized, and chemically-enriched world, Uranus could be our closest and best example of atmospheric processes on a class of worlds that may dominate the census of planets beyond our own Solar System.
109 - Lei Zhou 2019
We aim to locate the stability region for Uranus Trojans (UT hereafter) and find out the dynamical mechanisms responsible for the structures in the phase space. Using the spectral number as the stability indicator, we construct the dynamical maps on the (a0, i0) plane. The proper frequencies of UTs are determined precisely so that we can depict the resonance web via a semi-analytical method. Two main stability regions are found, one each for the low-inclination (0-14deg) and high-inclination regime (32-59deg). There is also an instability strip in each of them, at 9deg and 51deg respectively. All stability regions are in the tadpole regime and no stable horseshoe orbits exist for UTs. The lack of moderate-inclined UTs is caused by the nu5 and nu7 secular resonances. The fine structures in the dynamical maps are shaped by high-degree secular resonances and secondary resonances. During the planetary migration, about 36.3% and 0.4% of the pre-formed orbits survive the fast and slow migrations (with migrating time scales of 1 and 10Myr) respectively, most of which are in high inclination. Since the low-inclined UTs are more likely to survive the age of the solar system, they make up 77% of all such long-life orbits by the end of the migration, making a total fraction up to 4.06E-3 and 9.07E-5 of the original population for the fast and slow migrations, respectively. About 3.81% UTs are able to survive the age of the solar system, among which 95.5% are on low-inclined orbits with i0<7.5deg. However, the depletion of the planetary migration seems to prevent a large fraction of such orbits, especially for the slow migration model.
Aims: The secondary atmospheres of terrestrial planets form and evolve as a consequence of interaction with the interior over geological time. We aim to quantify the influence of planetary bulk composition on the interior--atmosphere evolution for Ea rth-sized terrestrial planets to aid in the interpretation of future observations of terrestrial exoplanet atmospheres. Methods: We used a geochemical model to determine the major-element composition of planetary interiors (MgO, FeO, and SiO2) following the crystallization of a magma ocean after planet formation, predicting a compositional profile of the interior as an initial condition for our long-term thermal evolution model. Our 1D evolution model predicts the pressure-temperature structure of the interior, which we used to evaluate near-surface melt production and subsequent volatile outgassing. Volatiles are exchanged between the interior and atmosphere according to mass conservation. Results: Based on stellar compositions reported in the Hypatia catalog, we predict that about half of rocky exoplanets have a mantle that convects as a single layer (whole-mantle convection), and the other half exhibit double-layered convection due to the presence of a mid-mantle compositional boundary. Double-layered convection is more likely for planets with high bulk planetary Fe-content and low Mg/Si-ratio. We find that planets with low Mg/Si-ratio tend to cool slowly because their mantle viscosity is high. Accordingly, low-Mg/Si planets also tend to lose volatiles swiftly through extensive melting. Moreover, the dynamic regime of the lithosphere (plate tectonics vs. stagnant lid) has a first-order influence on the thermal evolution and volatile cycling. These results suggest that the composition of terrestrial exoplanetary atmospheres can provide information on the dynamic regime of the lithosphere and the thermo-chemical evolution of the interior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا