ﻻ يوجد ملخص باللغة العربية
The low luminosity of Uranus is a long-standing challenge in planetary science. Simple adiabatic models are inconsistent with the measured luminosity, which indicates that Uranus is non-adiabatic because it has thermal boundary layers and/or conductive regions. A gradual composition distribution acts as a thermal boundary to suppress convection and slow down the internal cooling. Here we investigate whether composition gradients in the deep interior of Uranus can explain its low luminosity, the required composition gradient, and whether it is stable for convective mixing on a timescale of some billion years. We varied the primordial composition distribution and the initial energy budget of the planet, and chose the models that fit the currently measured properties (radius, luminosity, and moment of inertia) of Uranus. We present several alternative non-adiabatic internal structures that fit the Uranus measurements. We found that convective mixing is limited to the interior of Uranus, and a composition gradient is stable and sufficient to explain its current luminosity. As a result, the interior of Uranus might still be very hot, in spite of its low luminosity. The stable composition gradient also indicates that the current internal structure of Uranus is similar to its primordial structure. Moreover, we suggest that the initial energy content of Uranus cannot be greater than 20% of its formation (accretion) energy. We also find that an interior with a mixture of ice and rock, rather than separated ice and rock shells, is consistent with measurements, suggesting that Uranus might not be differentiated. Our models can explain the luminosity of Uranus, and they are also consistent with its metal-rich atmosphere and with the predictions for the location where its magnetic field is generated.
The intrinsic luminosity of Uranus is a factor of 10 less than that of Neptune, an observation that standard giant planetary evolution models, which assume negligible viscosity, fail to capture. Here we show that more than half of the interior of Ura
We present a self-consistent model for the tidal evolution of circumbinary planets. Based on the weak-friction model, we derive expressions of the resulting forces and torques considering complete tidal interactions between all the bodies of the syst
This paper presents a self-consistent model for the evolution of gas produced in the debris disc of $beta$ Pictoris. Our model proposes that atomic carbon and oxygen are created from the photodissociation of CO, which is itself released from volatile
We present a publicly available library of model atmospheres with radiative-convective equilibrium Pressure-Temperature ($P$-$T$) profiles fully consistent with equilibrium chemical abundances, and the corresponding emission and transmission spectrum
Uranus provides a unique laboratory to test our understanding of planetary atmospheres under extreme conditions. Multi-spectral observations from Voyager, ground-based observatories, and space telescopes have revealed a delicately banded atmosphere p