ﻻ يوجد ملخص باللغة العربية
The project of Greenlees et al. on understanding rational G-spectra in terms of algebraic categories has had many successes, classifying rational G-spectra for finite groups, SO(2), O(2), SO(3), free and cofree G-spectra as well as rational toral G-spectra for arbitrary compact Lie groups. This paper provides an introduction to the subject in two parts. The first discusses rational G-Mackey functors, the action of the Burnside ring and change of group functors. It gives a complete proof of the well-known classification of rational Mackey functors for finite G. The second part discusses the methods and tools from equivariant stable homotopy theory needed to obtain algebraic models for rational G-spectra. It gives a summary of the key steps in the classification of rational G-spectrain terms of a symmetric monoidal algebraic category. Having these two parts in the same place allows one to clearly see the analogy between the algebraic and topological classifications.
For G a profinite group, we construct an equivalence between rational G-Mackey functors and a certain full subcategory of $G$-sheaves over the space of closed subgroups of G called Weyl-G-sheaves. This subcategory consists of those sheaves whose stal
In this thesis we will investigate rational G-spectra for a profinite group G. We will provide an algebraic model for this model category whose injective dimension can be calculated in terms of the Cantor-Bendixson rank of the space of closed subgrou
We present an introduction to the theory of algebraic geometry codes. Starting from evaluation codes and codes from order and weight functions, special attention is given to one-point codes and, in particular, to the family of Castle codes.
In this paper, we introduce the fundamental notion of a Markov basis, which is one of the first connections between commutative algebra and statistics. The notion of a Markov basis is first introduced by Diaconis and Sturmfels (1998) for conditional
This is an expository introduction to simplicial sets and simplicial homotopy theory with particular focus on relating the combinatorial aspects of the theory to their geometric/topological origins. It is intended to be accessible to students familia