ترغب بنشر مسار تعليمي؟ اضغط هنا

Astrophysical and theoretical physics implications from multimessenger neutron star observations

46   0   0.0 ( 0 )
 نشر من قبل Hector O. Silva
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Neutron Star Interior Composition Explorer (NICER) recently measured the mass and equatorial radius of the isolated neutron star PSR J0030+0451. We use these measurements to infer the moment of inertia, the quadrupole moment, and the surface eccentricity of an isolated neutron star for the first time, using relations between these quantities that are insensitive to the unknown equation of state of supranuclear matter. We also use these results to forecast the moment of inertia of neutron star A in the double pulsar binary J0737-3039, a quantity anticipated to be directly measured in the coming decade with radio observations. Combining this information with the measurement of the tidal Love number with LIGO/Virgo observations, we propose and implement the first theory-agnostic and equation-of-state-insensitive test of general relativity. Specializing these constraints to a particular modified theory, we find that consistency with general relativity places the most stringent constraint on gravitational parity violation to date, surpassing all other previously reported bounds by seven orders of magnitude and opens the path for future a test of general relativity with multimessenger neutron star observations.



قيم البحث

اقرأ أيضاً

We present ${tt bajes}$, a parallel and lightweight framework for Bayesian inference of multimessenger transients. ${tt bajes}$ is a Python modular package with minimal dependencies on external libraries adaptable to the majority of the Bayesian mode ls and to various sampling methods. We describe the general workflow and the parameter estimation pipeline for compact-binary-coalescence gravitational-wave transients. The latter is validated against injections of binary black hole and binary neutron star waveforms, including confidence interval tests that demonstrates the inference is well-calibrated. Binary neutron star postmerger injections are also studied using a network of five detectors made of LIGO, Virgo, KAGRA and Einstein Telescope. Postmerger signals will be detectable for sources at ${lesssim}80,$Mpc, with Einstein Telescope contributing over 90% of the total signal-to-noise ratio. As a full scale application, we re-analyze the GWTC-1 black hole transients using the effective-one-body ${tt TEOBResumS}$ approximant, and reproduce selected results with other approximants. ${tt bajes}$ inferences are consistent with previous results; the direct comparison of ${tt bajes}$ and ${tt bilby}$ analyses of GW150914 shows a maximum Jensen-Shannon divergence of $5.2{times}10^{-4}$. GW170817 is re-analyzed using ${tt TaylorF2}$ with 5.5PN point-mass and 7.5PN tides, ${tt TEOBResumSPA}$, and ${tt IMRPhenomPv2_NRTidal}$ with different cutoff-frequencies of $1024,$Hz and $2048,$Hz. We find that the former choice minimizes systematics on the reduced tidal parameter, while a larger amount of tidal information is gained with the latter choice. ${tt bajes}$ can perform these analyses in about 1~day using 128 CPUs.
We show how gravitational-wave observations with advanced detectors of tens to several tens of neutron-star binaries can measure the neutron-star radius with an accuracy of several to a few percent, for mass and spatial distributions that are realist ic, and with none of the sources located within 100 Mpc. We achieve such an accuracy by combining measurements of the total mass from the inspiral phase with those of the compactness from the postmerger oscillation frequencies. For estimating the measurement errors of these frequencies we utilize analytical fits to postmerger numerical-relativity waveforms in the time domain, obtained here for the first time, for four nuclear-physics equations of state and a couple of values for the mass. We further exploit quasi-universal relations to derive errors in compactness from those frequencies. Measuring the average radius to well within 10% is possible for a sample of 100 binaries distributed uniformly in volume between 100 and 300 Mpc, so long as the equation of state is not too soft or the binaries are not too heavy.
In the late inspiral phase, gravitational waves from binary neutron star mergers carry the imprint of the equation of state due to the tidally deformed structure of the components. If the stars contain solid crusts, then their shear modulus can affec t the deformability of the star and, thereby, modify the emitted signal. Here, we investigate the effect of realistic equations of state (EOSs) of the crustal matter, with a realistic model for the shear modulus of the stellar crust in a fully general relativistic framework. This allows us to systematically study the deviations that are expected from fluid models. In particular, we use unified EOSs, both relativistic and non-relativistic, in our calculations. We find that realistic EOSs of crusts cause a small correction, of $sim 1%$, in the second Love number. This correction will likely be subdominant to the statistical error expected in LIGO-Virgo observations at their respective advanced design sensitivities, but rival that error in third generation detectors. For completeness, we also study the effect of crustal shear on the magnetic-type Love number and find it to be much smaller.
We describe the first observations of the same celestial object with gravitational waves and light. * GW170817 was the first detection of a neutron star merger with gravitational waves. * The detection of a spatially coincident weak burst of $gamma $-rays (GRB 170817A) 1.7 s after the merger constituted the first electromagnetic detection of a gravitational wave source and established a connection between at least some cosmic short gamma-ray bursts (SGRBs) and binary neutron star mergers. * A fast-evolving optical and near-infrared transient (AT 2017gfo) associated with the event can be interpreted as resulting from the ejection of $sim$0.05 M$_{odot}$ of material enriched in r-process elements, finally establishing binary neutron star mergers as at least one source of r-process nucleosynthesis. * Radio and X-ray observations revealed a long-rising source that peaked $sim$160 d after the merger. Combined with the apparent superluminal motion of the associated VLBI source, these observations show that the merger produced a relativistic structured jet whose core was oriented $approx$ 20 deg from the line of sight and with properties similar to SGRBs. The jet structure likely results from the jet interaction with the merger ejecta. * The electromagnetic and gravitational wave information can be combined to produce constraints on the expansion rate of the universe and the equation of state of dense nuclear matter. These multimessenger endeavors will be a major emphasis for future work.
One century after its formulation, Einsteins general relativity has made remarkable predictions and turned out to be compatible with all experimental tests. Most of these tests probe the theory in the weak-field regime, and there are theoretical and experimental reasons to believe that general relativity should be modified when gravitational fields are strong and spacetime curvature is large. The best astrophysical laboratories to probe strong-field gravity are black holes and neutron stars, whether isolated or in binary systems. We review the motivations to consider extensions of general relativity. We present a (necessarily incomplete) catalog of modified theories of gravity for which strong-field predictions have been computed and contrasted to Einsteins theory, and we summarize our current understanding of the structure and dynamics of compact objects in these theories. We discuss current bounds on modified gravity from binary pulsar and cosmological observations, and we highlight the potential of future gravitational wave measurements to inform us on the behavior of gravity in the strong-field regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا