ﻻ يوجد ملخص باللغة العربية
Previous works for a liquid suddenly contacting a gas at a supercritical pressure show the coexistence of both phases and the generation of diffusion layers on both sides of the liquid-gas interface due to thermodynamic phase equilibrium. A related numerical study of a laminar mixing layer between the liquid and gas streams in the near field of the splitter plate suggests that mass, momentum and thermal diffusion layers evolve in a self-similar manner at very high pressures. In this paper, the high-pressure, two-phase, laminar mixing-layer equations are recast in terms of a similarity variable. A liquid hydrocarbon and gaseous oxygen are considered. Freestream conditions and proper matching conditions at the liquid-gas interface are applied. To solve the system of equations, a real-fluid thermodynamic model based on the Soave-Redlich-Kwong equation of state is selected. A comparison with results obtained by directly solving the laminar mixing-layer equations shows the validity of the similarity approach applied to non-ideal two-phase flows. Even when the gas is hotter than the liquid, condensation can occur at high pressures while heat conducts into the liquid. Finally, a generalized correlation is proposed to represent the evolution of the mixing layer thickness for different problem setups.
Numerical analysis of a shear layer between a cool liquid n-decane hydrocarbon and a hot oxygen gas at supercritical pressures shows that a well-defined phase equilibrium can be established. Variable properties are considered with the product of dens
Three-dimensional laminar flow structures with mixing, chemical reaction, normal strain, and shear strain qualitatively representative of turbulent combustion at the small scales are analyzed. A mixing layer is subjected to counterflow in the transve
A two-phase, low-Mach-number flow solver is proposed for variable-density liquid and gas with phase change. The interface is captured using a split Volume-of-Fluid method, which solves the advection of the reference phase, generalized for the case wh
The two-phase mixing layer formed between parallel gas and liquid streams is an important fundamental problem in turbulent multiphase flows. The problem is relevant to many industrial applications and natural phenomena, such as air-blast atomizers in
Numerical work on shockwave/boundary-layer interactions (SBLIs) to date has largely focused on span-periodic quasi-2D configurations that neglect the influence lateral confinement has on the core flow. The present study is concerned with the effect o