ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak gravity (and other conjectures) with broken supersymmetry

52   0   0.0 ( 0 )
 نشر من قبل Quentin Bonnefoy
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the weak gravity conjecture in non-supersymmetric string theory setups. Precisely, those are type I string theory with supersymmetry broken `a la Scherk-Schwarz and open strings on D branes wrapped around magnetized tori in type II string theory. We compute long-range interactions between identical branes at one-loop and compare them to the weak gravity conjecture for higher-degree forms. In our examples, SUSY breaking generates interactions between branes, which are not anymore BPS, in such a way that the weak gravity conjecture is verified. In type I with the Scherk-Schwarz mechanism, the tension of the branes is reduced by one-loop quantum effects, so that there are long-range repulsive forces. The correlation of the non-vanishing brane potential with the presence of a running modulus and of possible D branes bound states nicely connects to other swampland conjectures. For magnetized branes in type II strings, we check that non-BPS branes experience a long-range repulsion whenever the open string spectrum is tachyon-free. Ultimately, the role of stringy objects in the discussion makes it compelling to further understand swampland conjectures in strings with broken SUSY, let alone their phenomenological relevance.

قيم البحث

اقرأ أيضاً

112 - Anthony M. Charles 2019
We study one-loop divergences in Einstein-Maxwell theory and their implications for the weak gravity conjecture. In particular, we show that renormalization of these divergences leads to positivity of higher-derivative corrections to the charge-to-ma ss ratio of dyonic black holes. This allows charged extremal black holes to decay into smaller ones, and so the weak gravity conjecture is automatically satisfied. We also extend this analysis to a much wider class of Einstein-Maxwell theories coupled to additional massless matter fields and find the same result. We then go on to study one-loop divergences in $mathcal{N} geq 2$ supergravity and show that dyonic black holes in these theories are protected against one-loop quantum corrections, even if the black hole breaks supersymmetry. In particular, extremal dyonic black holes are stabilized by supersymmetry and cannot decay.
We study the perturbative stability of four settings that arise in String Theory, when dilaton potentials accompany the breaking of Supersymmetry, in the USp(32) and U(32) orientifold models, and also in the heterotic SO(16)xSO(16) model. The first t wo settings are a family of AdS3xS7 orientifold vacua and a family of AdS7xS3 heterotic vacua, supported by form fluxes, with small world-sheet and string-loop corrections within wide ranges of parameters. In both cases we find some unstable scalar perturbations, as a result of mixings induced by fluxes, confirming for the first class of vacua a previous result. However, in the second class they only affect the l=1 modes, so that a Z2 projection induced by an overall internal parity suffices to eliminate them, leading to perturbative stability. Moreover, the constant dilaton profiles of these vacua allow one to extend the analysis to generic potentials, thus exploring the possible effects of higher-order corrections, and we exhibit wide nearby regions of perturbative stability. The solutions in the third setting have nine-dimensional Poincare symmetry. They include regions with large world-sheet or string-loop corrections, but we show that these vacua have no perturbative instabilities. Finally, the last setting concerns cosmological solutions in ten dimensions where the climbing phenomenon takes place: they have bounded string-loop corrections but large world-sheet ones close to the initial singularity. We find that perturbations generally decay, but homogeneous tensor modes exhibit an interesting logarithmic growth that signals a breakdown of isotropy. If the Universe then proceeds to lower dimensions, milder potentials from other branes force all perturbations to remain bounded.
Positivity bounds coming from consistency of UV scattering amplitudes are in general insufficient to prove the weak gravity conjecture for theories beyond Einstein-Maxwell. Additional ingredients about the UV may be necessary to exclude those regions of parameter space which are naively in conflict with the predictions of the weak gravity conjecture. In this paper we explore the consequences of imposing additional symmetries inherited from the UV theory on higher-derivative operators for Einstein-Maxwell-dilaton-axion theory. Using black hole thermodynamics, for a preserved SL($2,mathbb{R}$) symmetry we find that the weak gravity conjecture then does follow from positivity bounds. For a preserved O($d,d;mathbb{R}$) symmetry we find a simple condition on the two Wilson coefficients which ensures the positivity of corrections to the charge-to-mass ratio and that follows from the null energy condition alone. We find that imposing supersymmetry on top of either of these symmetries gives corrections which vanish identically, as expected for BPS states.
Intersecting D-brane models and their T-dual magnetic compactifications yield attractive models of particle physics where magnetic flux plays a twofold role, being the source of fermion chirality as well as supersymmetry breaking. A potential problem of these models is the appearance of tachyons which can only be avoided in certain regions of moduli space and in the presence of Wilson lines. We study the effective four-dimensional field theory for an orientifold compactification of type IIA string theory and the corresponding toroidal compactification of type I string theory. After determining the Kaluza-Klein and Landau-level towers of massive states in different sectors of the model, we evaluate their contributions to the one-loop effective potential, summing over all massive states, and we relate the result to the corresponding string partition functions. We find that the Wilson-line effective potential has only saddle points, and the theory is therefore driven to the tachyonic regime. There tachyon condensation takes place and chiral fermions acquire a mass of the order of the compactification scale. We also find evidence for a tachyonic behaviour of the volume moduli. More work on tachyon condensation is needed to clarify the connection between supersymmetry breaking, a chiral fermion spectrum and vacuum stability.
We study non-topological, charged planar walls (Q-walls) in the context of a particle physics model with supersymmetry broken by low-energy gauge mediation. Analytical properties are derived within the flat-potential approximation for the flat-direct ion raising potential, while a numerical study is performed using the full two-loop supersymmetric potential. We analyze the energetics of finite-size Q-walls and compare them to Q-balls, non-topological solitons possessing spherical symmetry and arising in the same supersymmetric model. This allow us to draw a phase diagram in the charge-transverse length plane, which shows a region where Q-wall solutions are more stable than Q-balls.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا