ﻻ يوجد ملخص باللغة العربية
The intensity levels allowed by safety standards (ANSI or ICNIRP) limit the amount of light that can be used in a clinical setting to image highly scattering or absorptive tissues with Optical Coherence Tomography (OCT). To achieve high-sensitivity imaging at low intensity levels, we adapt a detection scheme -- which is used in quantum optics for providing information about spectral correlations of photons -- into a standard spectral domain OCT system. This detection scheme is based on the concept of Dispersive Fourier Transformation, where a fibre introduces a wavelength-dependent time delay measured by a single-pixel detector, usually a high-speed photoreceiver. Here, we use a fast Superconducting Single-Photon Detector (SSPD) as a single-pixel detector and obtain images of a glass stack and a slice of onion at the intensity levels of the order of 10 pW. We also provide a formula for a depth-dependent sensitivity fall-off in such a detection scheme which can be treated as a temporal equivalent of diffraction-grating-based spectrometers.
Optical coherence tomography (OCT) is a 3D imaging technique that was introduced in 1991 [Science 254, 1178 (1991); Applied Optics 31, 919 (1992)]. Since 2018 there has been growing interest in a new type of OCT scheme based on the use of so-called n
We report on a technically simple approach to achieve high-resolution and high-sensitivity Fourier-domain OCT imaging in the mid-infrared range. The proposed OCT system employs an InF3 supercontinuum source. A specially designed dispersive scanning s
Mid-infrared light scatters much less than shorter wavelengths, allowing greatly enhanced penetration depths for optical imaging techniques such as optical coherence tomography (OCT). However, both detection and broadband sources in the mid-IR are te
Quantum Optical Coherence Tomography (Q-OCT) is a non-classical equivalent of Optical Coherence Tomography and is able to provide a twofold axial resolution increase and immunity to resolution-degrading dispersion. The main drawback of Q-OCT are arte
In this paper, we revisit the well-known Hong-Ou-Mandel (HOM) effect in which two photons, which meet at a beamsplitter, can interfere destructively, leading to null in coincidence counts. In a standard HOM measurement, the coincidence counts across