ﻻ يوجد ملخص باللغة العربية
Deep convolutional neural networks have been a popular tool for image generation and restoration. The performance of these networks is related to the capability of learning realistic features from a large dataset. In this work, we applied the problem of inpainting non-Gaussian signal, in the context of Galactic diffuse emissions at the millimetric and sub-millimetric regimes, specifically Synchrotron and Thermal Dust emission. Both of them are affected by contamination at small angular scales due to extra-galactic radio sources (the former) and to dusty star-forming galaxies (the latter). We consider the performances of a nearest-neighbors inpainting technique and compare it with two novels methodologies relying on generative Neural Networks. We show that the generative network is able to reproduce the statistical properties of the ground truth signal more consistently with high confidence level. The Python Inpainter for Cosmological and AStrophysical SOurces (PICASSO) is a package encoding a suite of inpainting methods described in this work and has been made publicly available.
We present a novel application of partial convolutional neural networks (PCNN) that can inpaint masked images of the cosmic microwave background. The network can reconstruct both the maps and the power spectra to a few percent for circular and irregu
Active Galactic Nuclei (AGN) and star-forming galaxies are leading candidates for being the luminous sources that reionized our Universe. Next-generation 21cm surveys are promising to break degeneracies between a broad range of reionization models, h
We present arcminute-resolution intensity and polarization maps of the Galactic center made with the Atacama Cosmology Telescope (ACT). The maps cover a 32 deg$^2$ field at 98, 150, and 224 GHz with $vert lvertle4^circ$, $vert bvertle2^circ$. We comb
We compute the cross correlation of the intensity and polarisation from the 5-year WMAP data in different sky-regions with respect to template maps for synchrotron, dust, and free-free emission. We derive the frequency dependence and polarisation fra
From 1,000 hydrodynamic simulations of the CAMELS project, each with a different value of the cosmological and astrophysical parameters, we generate 15,000 gas temperature maps. We use a state-of-the-art deep convolutional neural network to recover m