ترغب بنشر مسار تعليمي؟ اضغط هنا

Identifying Reionization Sources from 21cm Maps using Convolutional Neural Networks

78   0   0.0 ( 0 )
 نشر من قبل Sultan Hassan
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Active Galactic Nuclei (AGN) and star-forming galaxies are leading candidates for being the luminous sources that reionized our Universe. Next-generation 21cm surveys are promising to break degeneracies between a broad range of reionization models, hence revealing the nature of the source population. While many current efforts are focused on a measurement of the 21cm power spectrum, some surveys will also image the 21cm field during reionization. This provides further information with which to determine the nature of reionizing sources. We create a Convolutional Neural Network (CNN) that is efficiently able to distinguish between 21cm maps that are produced by AGN versus galaxies scenarios with an accuracy of 92-100%, depending on redshift and neutral fraction range. An exception to this is when our Universe is highly ionized, since the source models give near-identical 21cm maps in that case. When adding thermal noise from typical 21cm experiments, the classification accuracy depends strongly on the effectiveness of foreground removal. Our results show that if foregrounds can be removed reasonably well, SKA, HERA and LOFAR should be able to discriminate between source models with greater accuracy at a fixed redshift. Only future SKA 21cm surveys are promising to break the degeneracies in the power spectral analysis.



قيم البحث

اقرأ أيضاً

We present forecasts on the detectability of Ultra-light axion-like particles (ULAP) from future 21cm radio observations around the epoch of reionization (EoR). We show that the axion as the dominant dark matter component has a significant impact on the reionization history due to the suppression of small scale density perturbations in the early universe. This behavior depends strongly on the mass of the axion particle. Using numerical simulations of the brightness temperature field of neutral hydrogen over a large redshift range, we construct a suite of training data. This data is used to train a convolutional neural network that can build a connection between the spatial structures of the brightness temperature field and the input axion mass directly. We construct mock observations of the future Square Kilometer Array survey, SKA1-Low, and find that even in the presence of realistic noise and resolution constraints, the network is still able to predict the input axion mass. We find that the axion mass can be recovered over a wide mass range with a precision of approximately 20%, and as the whole DM contribution, the axion can be detected using SKA1-Low at 68% if the axion mass is $M_X<1.86 times10^{-20}$eV although this can decrease to $M_X<5.25 times10^{-21}$eV if we relax our assumptions on the astrophysical modeling by treating those astrophysical parameters as nuisance parameters.
Next-generation 21cm observations will enable imaging of reionization on very large scales. These images will contain more astrophysical and cosmological information than the power spectrum, and hence providing an alternative way to constrain the con tribution of different reionizing sources populations to cosmic reionization. Using Convolutional Neural Networks, we present a simple network architecture that is sufficient to discriminate between Galaxy-dominated versus AGN-dominated models, even in the presence of simulated noise from different experiments such as the HERA and SKA.
We present a novel application of partial convolutional neural networks (PCNN) that can inpaint masked images of the cosmic microwave background. The network can reconstruct both the maps and the power spectra to a few percent for circular and irregu larly shaped masks covering up to ~10% of the image area. By performing a Kolmogorov-Smirnov test we show that the reconstructed maps and power spectra are indistinguishable from the input maps and power spectra at the 99.9% level. Moreover, we show that PCNNs can inpaint maps with regular and irregular masks to the same accuracy. This should be particularly beneficial to inpaint irregular masks for the CMB that come from astrophysical sources such as galactic foregrounds. The proof of concept application shown in this paper shows that PCNNs can be an important tool in data analysis pipelines in cosmology.
166 - Tumelo Mangena 2020
Upcoming 21cm surveys with the SKA1-LOW telescope will enable imaging of the neutral hydrogen distribution on cosmological scales in the early Universe. These surveys are expected to generate huge imaging datasets that will encode more information th an the power spectrum. This provides an alternative unique way to constrain the reionization history, which might break the degeneracy in the power spectral analysis. Using Convolutional Neural Networks (CNN), we create a fast estimator of the neutral fraction from the 21cm maps that are produced by our large semi-numerical simulation. Our estimator is able to efficiently recover the neutral fraction ($x_{rm HI}$) at several redshifts with a high accuracy of 99% as quantified by the coefficient of determination $R^{2}$. Adding the instrumental effects from the SKA design slightly increases the loss function, but nevertheless we are still able to recover the neutral fraction with a similar high accuracy of 98%, which is only 1 per cent less. While a weak dependence on redshift is observed, the accuracy increases rapidly with decreasing neutral fraction. This is due to the fact that the instrumental noise increases towards high redshift where the Universe is highly neutral. Our results show the promise of directly using 21cm-tomography to constrain the reionization history in a model independent way, complementing similar efforts, such as those of the optical depth measurements from the Cosmic Microwave Background (CMB) observations by {it Planck}.
The study of the cosmic Dark Ages, Cosmic Dawn, and Epoch of Reionization (EoR) using the all-sky averaged redshifted HI 21cm signal, are some of the key science goals of most of the ongoing or upcoming experiments, for example, EDGES, SARAS, and the SKA. This signal can be detected by averaging over the entire sky, using a single radio telescope, in the form of a Global signal as a function of only redshifted HI 21cm frequencies. One of the major challenges faced while detecting this signal is the dominating, bright foreground. The success of such detection lies in the accuracy of the foreground removal. The presence of instrumental gain fluctuations, chromatic primary beam, radio frequency interference (RFI) and the Earths ionosphere corrupts any observation of radio signals from the Earth. Here, we propose the use of Artificial Neural Networks (ANN) to extract the faint redshifted 21cm Global signal buried in a sea of bright Galactic foregrounds and contaminated by different instrumental models. The most striking advantage of using ANN is the fact that, when the corrupted signal is fed into a trained network, we can simultaneously extract the signal as well as foreground parameters very accurately. Our results show that ANN can detect the Global signal with $gtrsim 92 %$ accuracy even in cases of mock observations where the instrument has some residual time-varying gain across the spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا