ﻻ يوجد ملخص باللغة العربية
Artificial Intelligence (AI) has achieved great success in many domains, and game AI is widely regarded as its beachhead since the dawn of AI. In recent years, studies on game AI have gradually evolved from relatively simple environments (e.g., perfect-information games such as Go, chess, shogi or two-player imperfect-information games such as heads-up Texas holdem) to more complex ones (e.g., multi-player imperfect-information games such as multi-player Texas holdem and StartCraft II). Mahjong is a popular multi-player imperfect-information game worldwide but very challenging for AI research due to its complex playing/scoring rules and rich hidden information. We design an AI for Mahjong, named Suphx, based on deep reinforcement learning with some newly introduced techniques including global reward prediction, oracle guiding, and run-time policy adaptation. Suphx has demonstrated stronger performance than most top human players in terms of stable rank and is rated above 99.99% of all the officially ranked human players in the Tenhou platform. This is the first time that a computer program outperforms most top human players in Mahjong.
Games are abstractions of the real world, where artificial agents learn to compete and cooperate with other agents. While significant achievements have been made in various perfect- and imperfect-information games, DouDizhu (a.k.a. Fighting the Landl
We present DrQ-v2, a model-free reinforcement learning (RL) algorithm for visual continuous control. DrQ-v2 builds on DrQ, an off-policy actor-critic approach that uses data augmentation to learn directly from pixels. We introduce several improvement
The game of chess is the most widely-studied domain in the history of artificial intelligence. The strongest programs are based on a combination of sophisticated search techniques, domain-specific adaptations, and handcrafted evaluation functions tha
Placement Optimization is an important problem in systems and chip design, which consists of mapping the nodes of a graph onto a limited set of resources to optimize for an objective, subject to constraints. In this paper, we start by motivating rein
There has been a recent explosion in the capabilities of game-playing artificial intelligence. Many classes of tasks, from video games to motor control to board games, are now solvable by fairly generic algorithms, based on deep learning and reinforc