ترغب بنشر مسار تعليمي؟ اضغط هنا

Empirical Comparison of Graph Embeddings for Trust-Based Collaborative Filtering

81   0   0.0 ( 0 )
 نشر من قبل Tomislav Duricic
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we study the utility of graph embeddings to generate latent user representations for trust-based collaborative filtering. In a cold-start setting, on three publicly available datasets, we evaluate approaches from four method families: (i) factorization-based, (ii) random walk-based, (iii) deep learning-based, and (iv) the Large-scale Information Network Embedding (LINE) approach. We find that across the four families, random-walk-based approaches consistently achieve the best accuracy. Besides, they result in highly novel and diverse recommendations. Furthermore, our results show that the use of graph embeddings in trust-based collaborative filtering significantly improves user coverage.

قيم البحث

اقرأ أيضاً

We extend variational autoencoders (VAEs) to collaborative filtering for implicit feedback. This non-linear probabilistic model enables us to go beyond the limited modeling capacity of linear factor models which still largely dominate collaborative f iltering research.We introduce a generative model with multinomial likelihood and use Bayesian inference for parameter estimation. Despite widespread use in language modeling and economics, the multinomial likelihood receives less attention in the recommender systems literature. We introduce a different regularization parameter for the learning objective, which proves to be crucial for achieving competitive performance. Remarkably, there is an efficient way to tune the parameter using annealing. The resulting model and learning algorithm has information-theoretic connections to maximum entropy discrimination and the information bottleneck principle. Empirically, we show that the proposed approach significantly outperforms several state-of-the-art baselines, including two recently-proposed neural network approaches, on several real-world datasets. We also provide extended experiments comparing the multinomial likelihood with other commonly used likelihood functions in the latent factor collaborative filtering literature and show favorable results. Finally, we identify the pros and cons of employing a principled Bayesian inference approach and characterize settings where it provides the most significant improvements.
The interactions of users and items in recommender system could be naturally modeled as a user-item bipartite graph. In recent years, we have witnessed an emerging research effort in exploring user-item graph for collaborative filtering methods. Neve rtheless, the formation of user-item interactions typically arises from highly complex latent purchasing motivations, such as high cost performance or eye-catching appearance, which are indistinguishably represented by the edges. The existing approaches still remain the differences between various purchasing motivations unexplored, rendering the inability to capture fine-grained user preference. Therefore, in this paper we propose a novel Multi-Component graph convolutional Collaborative Filtering (MCCF) approach to distinguish the latent purchasing motivations underneath the observed explicit user-item interactions. Specifically, there are two elaborately designed modules, decomposer and combiner, inside MCCF. The former first decomposes the edges in user-item graph to identify the latent components that may cause the purchasing relationship; the latter then recombines these latent components automatically to obtain unified embeddings for prediction. Furthermore, the sparse regularizer and weighted random sample strategy are utilized to alleviate the overfitting problem and accelerate the optimization. Empirical results on three real datasets and a synthetic dataset not only show the significant performance gains of MCCF, but also well demonstrate the necessity of considering multiple components.
Collaborative filtering recommendation systems provide recommendations to users based on their own past preferences, as well as those of other users who share similar interests. The use of recommendation systems has grown widely in recent years, help ing people choose which movies to watch, books to read, and items to buy. However, users are often concerned about their privacy when using such systems, and many users are reluctant to provide accurate information to most online services. Privacy-preserving collaborative filtering recommendation systems aim to provide users with accurate recommendations while maintaining certain guarantees about the privacy of their data. This survey examines the recent literature in privacy-preserving collaborative filtering, providing a broad perspective of the field and classifying the key contributions in the literature using two different criteria: the type of vulnerability they address and the type of approach they use to solve it.
117 - Yunfan Wu , Qi Cao , Huawei Shen 2021
In recent years, graph neural networks (GNNs) have shown powerful ability in collaborative filtering, which is a widely adopted recommendation scenario. While without any side information, existing graph neural network based methods generally learn a one-hot embedding for each user or item as the initial input representation of GNNs. However, such one-hot embedding is intrinsically transductive, making these methods with no inductive ability, i.e., failing to deal with new users or new items that are unseen during training. Besides, the number of model parameters depends on the number of users and items, which is expensive and not scalable. In this paper, we give a formal definition of inductive recommendation and solve the above problems by proposing Inductive representation based Graph Convolutional Network (IGCN) for collaborative filtering. Specifically, we design an inductive representation layer, which utilizes the interaction behavior with core users or items as the initial representation, improving the general recommendation performance while bringing inductive ability. Note that, the number of parameters of IGCN only depends on the number of core users or items, which is adjustable and scalable. Extensive experiments on three public benchmarks demonstrate the state-of-the-art performance of IGCN in both transductive and inductive recommendation scenarios, while with remarkably fewer model parameters. Our implementations are available here in PyTorch.
User-item interactions in recommendations can be naturally de-noted as a user-item bipartite graph. Given the success of graph neural networks (GNNs) in graph representation learning, GNN-based C methods have been proposed to advance recommender syst ems. These methods often make recommendations based on the learned user and item embeddings. However, we found that they do not perform well wit sparse user-item graphs which are quite common in real-world recommendations. Therefore, in this work, we introduce a novel perspective to build GNN-based CF methods for recommendations which leads to the proposed framework Localized Graph Collaborative Filtering (LGCF). One key advantage of LGCF is that it does not need to learn embeddings for each user and item, which is challenging in sparse scenarios. Alternatively, LGCF aims at encoding useful CF information into a localized graph and making recommendations based on such graph. Extensive experiments on various datasets validate the effectiveness of LGCF especially in sparse scenarios. Furthermore, empirical results demonstrate that LGCF provides complementary information to the embedding-based CF model which can be utilized to boost recommendation performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا