ترغب بنشر مسار تعليمي؟ اضغط هنا

Architecture Disentanglement for Deep Neural Networks

159   0   0.0 ( 0 )
 نشر من قبل Jie Hu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding the inner workings of deep neural networks (DNNs) is essential to provide trustworthy artificial intelligence techniques for practical applications. Existing studies typically involve linking semantic concepts to units or layers of DNNs, but fail to explain the inference process. In this paper, we introduce neural architecture disentanglement (NAD) to fill the gap. Specifically, NAD learns to disentangle a pre-trained DNN into sub-architectures according to independent tasks, forming information flows that describe the inference processes. We investigate whether, where, and how the disentanglement occurs through experiments conducted with handcrafted and automatically-searched network architectures, on both object-based and scene-based datasets. Based on the experimental results, we present three new findings that provide fresh insights into the inner logic of DNNs. First, DNNs can be divided into sub-architectures for independent tasks. Second, deeper layers do not always correspond to higher semantics. Third, the connection type in a DNN affects how the information flows across layers, leading to different disentanglement behaviors. With NAD, we further explain why DNNs sometimes give wrong predictions. Experimental results show that misclassified images have a high probability of being assigned to task sub-architectures similar to the correct ones. Code will be available at: https://github.com/hujiecpp/NAD.

قيم البحث

اقرأ أيضاً

We present a neural architecture search (NAS) technique to enhance the performance of unsupervised image de-noising, in-painting and super-resolution under the recently proposed Deep Image Prior (DIP). We show that evolutionary search can automatical ly optimize the encoder-decoder (E-D) structure and meta-parameters of the DIP network, which serves as a content-specific prior to regularize these single image restoration tasks. Our binary representation encodes the design space for an asymmetric E-D network that typically converges to yield a content-specific DIP within 10-20 generations using a population size of 500. The optimized architectures consistently improve upon the visual quality of classical DIP for a diverse range of photographic and artistic content.
To reduce the human efforts in neural network design, Neural Architecture Search (NAS) has been applied with remarkable success to various high-level vision tasks such as classification and semantic segmentation. The underlying idea for the NAS algor ithm is straightforward, namely, to enable the network the ability to choose among a set of operations (e.g., convolution with different filter sizes), one is able to find an optimal architecture that is better adapted to the problem at hand. However, so far the success of NAS has not been enjoyed by low-level geometric vision tasks such as stereo matching. This is partly due to the fact that state-of-the-art deep stereo matching networks, designed by humans, are already sheer in size. Directly applying the NAS to such massive structures is computationally prohibitive based on the currently available mainstream computing resources. In this paper, we propose the first end-to-end hierarchical NAS framework for deep stereo matching by incorporating task-specific human knowledge into the neural architecture search framework. Specifically, following the gold standard pipeline for deep stereo matching (i.e., feature extraction -- feature volume construction and dense matching), we optimize the architectures of the entire pipeline jointly. Extensive experiments show that our searched network outperforms all state-of-the-art deep stereo matching architectures and is ranked at the top 1 accuracy on KITTI stereo 2012, 2015 and Middlebury benchmarks, as well as the top 1 on SceneFlow dataset with a substantial improvement on the size of the network and the speed of inference. The code is available at https://github.com/XuelianCheng/LEAStereo.
Neural architecture search (NAS) has witnessed prevailing success in image classification and (very recently) segmentation tasks. In this paper, we present the first preliminary study on introducing the NAS algorithm to generative adversarial network s (GANs), dubbed AutoGAN. The marriage of NAS and GANs faces its unique challenges. We define the search space for the generator architectural variations and use an RNN controller to guide the search, with parameter sharing and dynamic-resetting to accelerate the process. Inception score is adopted as the reward, and a multi-level search strategy is introduced to perform NAS in a progressive way. Experiments validate the effectiveness of AutoGAN on the task of unconditional image generation. Specifically, our discovered architectures achieve highly competitive performance compared to current state-of-the-art hand-crafted GANs, e.g., setting new state-of-the-art FID scores of 12.42 on CIFAR-10, and 31.01 on STL-10, respectively. We also conclude with a discussion of the current limitations and future potential of AutoGAN. The code is available at https://github.com/TAMU-VITA/AutoGAN
Non-Local (NL) blocks have been widely studied in various vision tasks. However, it has been rarely explored to embed the NL blocks in mobile neural networks, mainly due to the following challenges: 1) NL blocks generally have heavy computation cost which makes it difficult to be applied in applications where computational resources are limited, and 2) it is an open problem to discover an optimal configuration to embed NL blocks into mobile neural networks. We propose AutoNL to overcome the above two obstacles. Firstly, we propose a Lightweight Non-Local (LightNL) block by squeezing the transformation operations and incorporating compact features. With the novel design choices, the proposed LightNL block is 400x computationally cheaper} than its conventional counterpart without sacrificing the performance. Secondly, by relaxing the structure of the LightNL block to be differentiable during training, we propose an efficient neural architecture search algorithm to learn an optimal configuration of LightNL blocks in an end-to-end manner. Notably, using only 32 GPU hours, the searched AutoNL model achieves 77.7% top-1 accuracy on ImageNet under a typical mobile setting (350M FLOPs), significantly outperforming previous mobile models including MobileNetV2 (+5.7%), FBNet (+2.8%) and MnasNet (+2.1%). Code and models are available at https://github.com/LiYingwei/AutoNL.
Deep neural network (DNN) accelerators with improved energy and delay are desirable for meeting the requirements of hardware targeted for IoT and edge computing systems. Convolutional neural networks (CoNNs) belong to one of the most popular types of DNN architectures. This paper presents the design and evaluation of an accelerator for CoNNs. The system-level architecture is based on mixed-signal, cellular neural networks (CeNNs). Specifically, we present (i) the implementation of different layers, including convolution, ReLU, and pooling, in a CoNN using CeNN, (ii) modified CoNN structures with CeNN-friendly layers to reduce computational overheads typically associated with a CoNN, (iii) a mixed-signal CeNN architecture that performs CoNN computations in the analog and mixed signal domain, and (iv) design space exploration that identifies what CeNN-based algorithm and architectural features fare best compared to existing algorithms and architectures when evaluated over common datasets -- MNIST and CIFAR-10. Notably, the proposed approach can lead to 8.7$times$ improvements in energy-delay product (EDP) per digit classification for the MNIST dataset at iso-accuracy when compared with the state-of-the-art DNN engine, while our approach could offer 4.3$times$ improvements in EDP when compared to other network implementations for the CIFAR-10 dataset.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا