ترغب بنشر مسار تعليمي؟ اضغط هنا

Probabilistic Caching for Small-Cell Networks with Terrestrial and Aerial Users

217   0   0.0 ( 0 )
 نشر من قبل Wen Chen
 تاريخ النشر 2020
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

The support for aerial users has become the focus of recent 3GPP standardizations of 5G, due to their high maneuverability and flexibility for on-demand deployment. In this paper, probabilistic caching is studied for ultra-dense small-cell networks with terrestrial and aerial users, where a dynamic on-off architecture is adopted under a sophisticated path loss model incorporating both line-of-sight and non-line-of-sight transmissions. Generally, this paper focuses on the successful download probability (SDP) of user equipments (UEs) from small-cell base stations (SBSs) that cache the requested files under various caching strategies. To be more specific, the SDP is first analyzed using stochastic geometry theory, by considering the distribution of such two-tier UEs and SBSs as Homogeneous Poisson Point Processes. Second, an optimized caching strategy (OCS) is proposed to maximize the average SDP. Third, the performance limits of the average SDP are developed for the popular caching strategy (PCS) and the uniform caching strategy (UCS). Finally, the impacts of the key parameters, such as the SBS density, the cache size, the exponent of Zipf distribution and the height of aerial user, are investigated on the average SDP. The analytical results indicate that the UCS outperforms the PCS if the SBSs are sufficiently dense, while the PCS is better than the UCS if the exponent of Zipf distribution is large enough. Furthermore, the proposed OCS is superior to both the UCS and PCS.



قيم البحث

اقرأ أيضاً

Enabling the integration of aerial mobile users into existing cellular networks would make possible a number of promising applications. However, current cellular networks have not been designed to serve aerial users, and hence an exploration of desig n parameters is required in order to allow network providers to modify their current infrastructure. As a first step in this direction, this paper provides an in-depth analysis of the coverage probability of the downlink of a cellular network that serves both aerial and ground users. We present an exact mathematical characterization of the coverage probability, which includes the effect of base stations (BSs) height, antenna pattern and drone altitude for various type of urban environments. Interestingly, our results show that the favorable propagation conditions that aerial users enjoys due to its altitude is also their strongest limiting factor, as it leaves them vulnerable to interference. This negative effect can be substantially reduced by optimizing the flying altitude, the base station height and antenna down-tilt. Moreover, lowering the base station height and increasing down-tilt angle are in general beneficial for both terrestrial and aerial users, pointing out a possible path to enable their coexistence.
Coded Caching is an efficient technique to reduce peak hour network traffic. One limitation of known coded caching schemes is that the demands of all users are revealed to their peers in the delivery phase. Schemes that assure privacy for user demand s are studied in recent past. Assuming that the users are equipped with caches of small memory sizes, the achievable rate under demand privacy constraints is investigated in this work. We present an MDS code based demand private coded caching scheme with $K$ users and $N$ files that achieves a memory rate pair $left(frac{1}{K(N-1)+1},Nleft(1-frac{1}{K(N-1)+1}right)right)$. The presented memory-rate pair meets the lower bound under demand-privacy requirements, proposed by Yan textit{et al.} in the recent work cite{c13}. By memory sharing this characterizes the exact rate-memory trade-off for the demand private coded caching scheme for cache memory $Min left[0,frac{1}{K(N-1)+1}right]$.
119 - Lixing Chen , Jie Xu 2017
Mobile Edge Computing (MEC) pushes computing functionalities away from the centralized cloud to the proximity of data sources, thereby reducing service provision latency and saving backhaul network bandwidth. Although computation offloading has been extensively studied in the literature, service caching is an equally, if not more, important design topic of MEC, yet receives much less attention. Service caching refers to caching application services and their related data (libraries/databases) in the edge server, e.g. MEC-enabled Base Station (BS), enabling corresponding computation tasks to be executed. Since only a small number of services can be cached in resource-limited edge server at the same time, which services to cache has to be judiciously decided to maximize the system performance. In this paper, we investigate collaborative service caching in MEC-enabled dense small cell (SC) networks. We propose an efficient decentralized algorithm, called CSC (Collaborative Service Caching), where a network of small cell BSs optimize service caching collaboratively to address a number of key challenges in MEC systems, including service heterogeneity, spatial demand coupling, and decentralized coordination. Our algorithm is developed based on parallel Gibbs sampling by exploiting the special structure of the considered problem using graphing coloring. The algorithm significantly improves the time efficiency compared to conventional Gibbs sampling, yet guarantees provable convergence and optimality. CSC is further extended to the SC network with selfish BSs, where a coalitional game is formulated to incentivize collaboration. A coalition formation algorithm is developed by employing the merge-and-split rules and ensures the stability of the SC coalitions.
Dense small satellite networks (DSSN) in low earth orbits (LEO) can benefit several mobile terrestrial communication systems (MTCS). However, the potential benefits can only be achieved through careful consideration of DSSN infrastructure and identif ication of suitable DSSN technologies. In this paper, we discuss several components of DSSN infrastructure including satellite formations, orbital paths, inter-satellite communication (ISC) links, and communication architectures for data delivery from source to destination. We also review important technologies for DSSN as well as the challenges involved in the use of these technologies in DSSN. Several open research directions to enhance the benefits of DSSN for MTCS are also identified in the paper. A case study showing the integration benefits of DSSN in MTCS is also included.
Aerial relays have been regarded as an alternative and promising solution to extend and improve satellite-terrestrial communications, as the probability of line-of-sight transmissions increases compared with adopting terrestrial relays. In this paper , a cooperative satellite-aerial-terrestrial system including a satellite transmitter (S), a group of terrestrial receivers (D), and an aerial relay (R) is considered. Specifically, considering the randomness of S and D and employing stochastic geometry, the coverage probability of R-D links in non-interference and interference scenarios is studied, and the outage performance of S-R link is investigated by deriving an approximated expression for the outage probability. Moreover, an optimization problem in terms of the transmit power and the transmission time over S-R and R-D links is formulated and solved to obtain the optimal end-to-end energy efficiency for the considered system. Finally, some numerical results are provided to validate our proposed analysis models, as well as to study the optimal energy efficiency performance of the considered system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا