ترغب بنشر مسار تعليمي؟ اضغط هنا

Domain evolution in bended freestanding BaTiO3 ultrathin films: a phase-field simulation

312   0   0.0 ( 0 )
 نشر من قبل Changqing Guo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Perovskite ferroelectric oxides are usually considered to be brittle materials, however, recent work [Dong et al., Science 366, 475 (2019)] demonstrated the super-elasticity in the freestanding BaTiO3 thin films. This property may originate from the ferroelectric domain evolution during the bending, which is difficult to observe in experiments. Therefore, understanding the relation among the bending deformation, thickness of the films, and the domain dynamics is critical for their potential applications in flexible ferroelectric devices. Here, we reported the dynamics of ferroelectric polarization in the freestanding BaTiO3 ultrathin films in the presence of large bending deformation up to 40{deg} using phase-field simulation. The ferroelectric domain evolution reveals the transition from the flux-closure to a/c domains with vortex-like structures, which caused by the increase of out-of-plane ferroelectric polarization. Additionally, by varying the film thickness in the identical bending situation, we found the a/c phase with vortex-like structure emerges only as the film thickness reached 12 nm or higher. Results from our investigations provide instructive information for the microstructure evolution of bending ferroelectric perovskite oxide films, which could serve as guide for the future application of ferroelectric films on flexible electronic devices.

قيم البحث

اقرأ أيضاً

179 - J. Y. Jo , Y. S. Kim , T. W. Noh 2006
Thickness-dependence of coercive field (EC) was investigated in ultrathin BaTiO3 capacitors with thicknesses (d) between 30 and 5 nm. The EC appears nearly independent of d below 15 nm, and decreases slowly as d increases above 15 nm. This behavior c annot be explained by extrinsic effects, such as interfacial passive layers or strain relaxation, nor by homogeneous domain models. Based on domain nuclei formation model, the observed EC behavior is explainable via a quantitative level. A crossover of domain shape from a half-prolate spheroid to a cylinder is also suggested at d~ 15 nm, exhibiting good agreement with experimental results.
Structural, electronic and dielectric properties of high-quality ultrathin BaTiO3 films are investigated. The films, which are grown by ozone-assisted molecular beam epitaxy on Nb-doped SrTiO3 (001) substrates and having thicknesses as thin 8 unit ce lls (3.2 nm), are unreconstructed and atomically smooth with large crystalline terraces. A strain-driven transition to 3D island formation is observed for films of of 13 unit cells thickness (5.2 nm). The high structural quality of the surfaces, together with the dielectric properties similar to bulk BaTiO3 and dominantly TiO2 surface termination, make these films suitable templates for the synthesis of high-quality metal-oxide multiferroic heterostructures for the fundamental study and exploitation of magneto-electric effects, such as a recently proposed interface effect in Fe/BaTiO3 heterostructures based on Fe-Ti interface bonds.
We develop a phenomenological thermodynamic theory of ferroelectric BaTiO3 (BT) thin films epitaxially grown on cubic substrates using the Landau-Devonshire eight-order potential. The constructed misfit-temperature phase diagram is asymmetrical. We f ound that, overall view of the phase diagram depends on the values of compliances used in calculations and provide two qualitatively different diagrams. A thermodynamic path for BT film grown onto particular substrate can be found using a plot of the room-temperature tetragonal distortion (c-a)/a as a function of misfit strain.
We present a study of the thickness dependence of magnetism and electrical conductivity in ultra thin La0.67Sr0.33MnO3 films grown on SrTiO3 (110) substrates. We found a critical thickness of 10 unit cells below which the conductivity of the films di sappeared and simultaneously the Curie temperature (TC) increased, indicating a magnetic insulating phase at room temperature. These samples have a TC of about 560 K with a significant saturation magnetization of 1.2 +- 0.2 muB/Mn. The canted antiferromagnetic insulating phase in ultra thin films of n< 10 coincides with the occurrence of a higher symmetry structural phase with a different oxygen octahedra rotation pattern. Such a strain engineered phase is an interesting candidate for an insulating tunneling barrier in room temperature spin polarized tunneling devices.
Metal-insulator transition is observed in the La0.8Sr0.2MnO3 thin films with thickness larger than 5 unit cells. Insulating phase at lower temperature appeared in the ultrathin films with thickness ranging from 6 unit cells to 10 unit cells and it is found that the Mott variable range hopping conduction dominates in this insulating phase at low temperature with a decrease of localization length in thinner films. A deficiency of oxygen content and a resulted decrease of the Mn valence have been observed in the ultrathin films with thickness smaller than or equal to 10 unit cells by studying the aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy of the films. These results suggest that the existence of the oxygen vacancies in thinner films suppresses the double-exchange mechanism and contributes to the enhancement of disorder, leading to a decrease of the Curie temperature and the low temperature insulating phase in the ultrathin films. In addition, the suppression of the magnetic properties in thinner films indicates stronger disorder of magnetic moments, which is considered to be the reason for this decrease of the localization length.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا