ﻻ يوجد ملخص باللغة العربية
Perovskite ferroelectric oxides are usually considered to be brittle materials, however, recent work [Dong et al., Science 366, 475 (2019)] demonstrated the super-elasticity in the freestanding BaTiO3 thin films. This property may originate from the ferroelectric domain evolution during the bending, which is difficult to observe in experiments. Therefore, understanding the relation among the bending deformation, thickness of the films, and the domain dynamics is critical for their potential applications in flexible ferroelectric devices. Here, we reported the dynamics of ferroelectric polarization in the freestanding BaTiO3 ultrathin films in the presence of large bending deformation up to 40{deg} using phase-field simulation. The ferroelectric domain evolution reveals the transition from the flux-closure to a/c domains with vortex-like structures, which caused by the increase of out-of-plane ferroelectric polarization. Additionally, by varying the film thickness in the identical bending situation, we found the a/c phase with vortex-like structure emerges only as the film thickness reached 12 nm or higher. Results from our investigations provide instructive information for the microstructure evolution of bending ferroelectric perovskite oxide films, which could serve as guide for the future application of ferroelectric films on flexible electronic devices.
Thickness-dependence of coercive field (EC) was investigated in ultrathin BaTiO3 capacitors with thicknesses (d) between 30 and 5 nm. The EC appears nearly independent of d below 15 nm, and decreases slowly as d increases above 15 nm. This behavior c
Structural, electronic and dielectric properties of high-quality ultrathin BaTiO3 films are investigated. The films, which are grown by ozone-assisted molecular beam epitaxy on Nb-doped SrTiO3 (001) substrates and having thicknesses as thin 8 unit ce
We develop a phenomenological thermodynamic theory of ferroelectric BaTiO3 (BT) thin films epitaxially grown on cubic substrates using the Landau-Devonshire eight-order potential. The constructed misfit-temperature phase diagram is asymmetrical. We f
We present a study of the thickness dependence of magnetism and electrical conductivity in ultra thin La0.67Sr0.33MnO3 films grown on SrTiO3 (110) substrates. We found a critical thickness of 10 unit cells below which the conductivity of the films di
Metal-insulator transition is observed in the La0.8Sr0.2MnO3 thin films with thickness larger than 5 unit cells. Insulating phase at lower temperature appeared in the ultrathin films with thickness ranging from 6 unit cells to 10 unit cells and it is