ترغب بنشر مسار تعليمي؟ اضغط هنا

Secure Platooning of Autonomous Vehicles Under Attacked GPS Data

146   0   0.0 ( 0 )
 نشر من قبل Xingkang He
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study how to secure the platooning of autonomous vehicles when an unknown vehicle is under attack and bounded system uncertainties exist. For the attacked vehicle, its position and speed measurements from GPS can be manipulated arbitrarily by a malicious attacker. First, to find out which vehicle is under attack, two detectors are proposed by using the relative measurements (by camera or radar) and the local innovation obtained through measurements from neighboring vehicles. Then, based on the results of the detectors, we design a local state observer for each vehicle by applying a saturation method to the measurement innovation. Moreover, based on the neighbor state estimates provided by the observer, a distributed controller is proposed to achieve the consensus in vehicle speed and keep fixed desired distance between two neighboring vehicles. The estimation error by the observer and the platooning error by the controller are shown to be asymptotically upper bounded under certain conditions. The effectiveness of the proposed methods is also evaluated in numerical simulations.



قيم البحث

اقرأ أيضاً

112 - Tianci Yang , Chen Lv 2021
By using various sensors to measure the surroundings and sharing local sensor information with the surrounding vehicles through wireless networks, connected and automated vehicles (CAVs) are expected to increase safety, efficiency, and capacity of ou r transportation systems. However, the increasing usage of sensors has also increased the vulnerability of CAVs to sensor faults and adversarial attacks. Anomalous sensor values resulting from malicious cyberattacks or faulty sensors may cause severe consequences or even fatalities. In this paper, we increase the resilience of CAVs to faults and attacks by using multiple sensors for measuring the same physical variable to create redundancy. We exploit this redundancy and propose a sensor fusion algorithm for providing a robust estimate of the correct sensor information with bounded errors independent of the attack signals, and for attack detection and isolation. The proposed sensor fusion framework is applicable to a large class of security-critical Cyber-Physical Systems (CPSs). To minimize the performance degradation resulting from the usage of estimation for control, we provide an $H_{infty}$ controller for CACC-equipped CAVs capable of stabilizing the closed-loop dynamics of each vehicle in the platoon while reducing the joint effect of estimation errors and communication channel noise on the tracking performance and string behavior of the vehicle platoon. Numerical examples are presented to illustrate the effectiveness of our methods.
We study how to design a secure observer-based distributed controller such that a group of vehicles can achieve accurate state estimates and formation control even if the measurements of a subset of vehicle sensors are compromised by a malicious atta cker. We propose an architecture consisting of a resilient observer, an attack detector, and an observer-based distributed controller. The distributed detector is able to update three sets of vehicle sensors: the ones surely under attack, surely attack-free, and suspected to be under attack. The adaptive observer saturates the measurement innovation through a preset static or time-varying threshold, such that the potentially compromised measurements have limited influence on the estimation. Essential properties of the proposed architecture include: 1) The detector is fault-free, and the attacked and attack-free vehicle sensors can be identified in finite time; 2) The observer guarantees both real-time error bounds and asymptotic error bounds, with tighter bounds when more attacked or attack-free vehicle sensors are identified by the detector; 3) The distributed controller ensures closed-loop stability. The effectiveness of the proposed methods is evaluated through simulations by an application to vehicle platooning.
114 - Seongjin Choi 2021
Originally, the decision and control of the lane change of the vehicle were on the human driver. In previous studies, the decision-making of lane-changing of the human drivers was mainly used to increase the individuals benefit. However, the lane-cha nging behavior of these human drivers can sometimes have a bad influence on the overall traffic flow. As technology for autonomous vehicles develop, lane changing action as well as lane changing decision making fall within the control category of autonomous vehicles. However, since many of the current lane-changing decision algorithms of autonomous vehicles are based on the human driver model, it is hard to know the potential traffic impact of such lane change. Therefore, in this study, we focused on the decision-making of lane change considering traffic flow, and accordingly, we study the lane change control system considering the whole traffic flow. In this research, the lane change control system predicts the future traffic situation through the cell transition model, one of the most popular macroscopic traffic simulation models, and determines the change probability of each lane that minimizes the total time delay through the genetic algorithm. The lane change control system then conveys the change probability to this vehicle. In the macroscopic simulation result, the proposed control system reduced the overall travel time delay. The proposed system is applied to microscopic traffic simulation, the oversaturated freeway traffic flow algorithm (OFFA), to evaluate the potential performance when it is applied to the actual traffic system. In the traffic flow-density, the maximum traffic flow has been shown to be increased, and the points in the congestion area have also been greatly reduced. Overall, the time required for individual vehicles was reduced.
157 - Jie Zhu , Ivana Tasic , Xiaobo Qu 2021
Freeway on-ramps are typical bottlenecks in the freeway network due to the frequent disturbances caused by their associated merging, weaving, and lane-changing behaviors. With real-time communication and precise motion control, Connected and Autonomo us Vehicles (CAVs) provide an opportunity to substantially enhance the traffic operational performance of on-ramp bottlenecks. In this paper, we propose an upper-level control strategy to coordinate the two traffic streams at on-ramp merging through proactive gap creation and platoon formation. The coordination consists of three components: (1) mainline vehicles proactively decelerate to create large merging gaps; (2) ramp vehicles form platoons before entering the main road; (3) the gaps created on the main road and the platoons formed on the ramp are coordinated with each other in terms of size, speed, and arrival time. The coordination is formulated as a constrained optimization problem, incorporating both macroscopic and microscopic traffic flow models, for flow-level efficiency gains. The model uses traffic state parameters as inputs and determines the optimal coordination plan adaptive to real-time traffic conditions. The benefits of the proposed coordination are demonstrated through an illustrative case study. Results show that the coordination is compatible with real-world implementation and can substantially improve the overall efficiency of on-ramp merging, especially under high traffic volume conditions, where recurrent traffic congestion is prevented, and merging throughput increased.
This paper deals with the lateral control of a convoy of autonomous and connected following vehicles (ACVs) for executing an Emergency Lane Change (ELC) maneuver. Typically, an ELC maneuver is triggered by emergency cues from the front or the end of convoy as a response to either avoiding an obstacle or making way for other vehicles to pass. From a safety viewpoint, connectivity of ACVs is essential as it entails obtaining or exchanging information about other ACVs in the convoy. This paper assumes that ACVs have reliable connectivity and that every following ACV has the information about GPS position traces of the lead and immediately preceding vehicles in the convoy. This information provides a discretized preview of the trajectory to be tracked. Based on the available information, this article focuses on two schemes for synthesizing lateral control of ACVs based on(a) a single composite ELC trajectory that fuses lead and preceding vehicles GPS traces and (b) separate ELC trajectories based on preview data of preceding and lead vehicles. The former case entails the construction of a single composite ELC trajectory, determine the cross-track error, heading and yaw rate errors with respect to this trajectory and synthesize a lateral control action. The latter case entails the construction of two separate trajectories corresponding to the lead vehicles and preceding vehicles data separately and the subsequent computation of two sets of associated errors and lateral control actions and combining them to provide a steering command. Numerical and experimental results corroborate the effectiveness of these two schemes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا