ﻻ يوجد ملخص باللغة العربية
In this paper, we study how to secure the platooning of autonomous vehicles when an unknown vehicle is under attack and bounded system uncertainties exist. For the attacked vehicle, its position and speed measurements from GPS can be manipulated arbitrarily by a malicious attacker. First, to find out which vehicle is under attack, two detectors are proposed by using the relative measurements (by camera or radar) and the local innovation obtained through measurements from neighboring vehicles. Then, based on the results of the detectors, we design a local state observer for each vehicle by applying a saturation method to the measurement innovation. Moreover, based on the neighbor state estimates provided by the observer, a distributed controller is proposed to achieve the consensus in vehicle speed and keep fixed desired distance between two neighboring vehicles. The estimation error by the observer and the platooning error by the controller are shown to be asymptotically upper bounded under certain conditions. The effectiveness of the proposed methods is also evaluated in numerical simulations.
By using various sensors to measure the surroundings and sharing local sensor information with the surrounding vehicles through wireless networks, connected and automated vehicles (CAVs) are expected to increase safety, efficiency, and capacity of ou
We study how to design a secure observer-based distributed controller such that a group of vehicles can achieve accurate state estimates and formation control even if the measurements of a subset of vehicle sensors are compromised by a malicious atta
Originally, the decision and control of the lane change of the vehicle were on the human driver. In previous studies, the decision-making of lane-changing of the human drivers was mainly used to increase the individuals benefit. However, the lane-cha
Freeway on-ramps are typical bottlenecks in the freeway network due to the frequent disturbances caused by their associated merging, weaving, and lane-changing behaviors. With real-time communication and precise motion control, Connected and Autonomo
This paper deals with the lateral control of a convoy of autonomous and connected following vehicles (ACVs) for executing an Emergency Lane Change (ELC) maneuver. Typically, an ELC maneuver is triggered by emergency cues from the front or the end of