ترغب بنشر مسار تعليمي؟ اضغط هنا

Semiparametric Inference For Causal Effects In Graphical Models With Hidden Variables

97   0   0.0 ( 0 )
 نشر من قبل Rohit Bhattacharya
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The last decade witnessed the development of algorithms that completely solve the identifiability problem for causal effects in hidden variable causal models associated with directed acyclic graphs. However, much of this machinery remains underutilized in practice owing to the complexity of estimating identifying functionals yielded by these algorithms. In this paper, we provide simple graphical criteria and semiparametric estimators that bridge the gap between identification and estimation for causal effects involving a single treatment and a single outcome. First, we provide influence function based doubly robust estimators that cover a significant subset of hidden variable causal models where the effect is identifiable. We further characterize an important subset of this class for which we demonstrate how to derive the estimator with the lowest asymptotic variance, i.e., one that achieves the semiparametric efficiency bound. Finally, we provide semiparametric estimators for any single treatment causal effect parameter identified via the aforementioned algorithms. The resulting estimators resemble influence function based estimators that are sequentially reweighted, and exhibit a partial double robustness property, provided the parts of the likelihood corresponding to a set of weight models are correctly specified. Our methods are easy to implement and we demonstrate their utility through simulations.

قيم البحث

اقرأ أيضاً

Fitting a graphical model to a collection of random variables given sample observations is a challenging task if the observed variables are influenced by latent variables, which can induce significant confounding statistical dependencies among the ob served variables. We present a new convex relaxation framework based on regularized conditional likelihood for latent-variable graphical modeling in which the conditional distribution of the observed variables conditioned on the latent variables is given by an exponential family graphical model. In comparison to previously proposed tractable methods that proceed by characterizing the marginal distribution of the observed variables, our approach is applicable in a broader range of settings as it does not require knowledge about the specific form of distribution of the latent variables and it can be specialized to yield tractable approaches to problems in which the observed data are not well-modeled as Gaussian. We demonstrate the utility and flexibility of our framework via a series of numerical experiments on synthetic as well as real data.
81 - Debo Cheng 2020
This paper discusses the problem of causal query in observational data with hidden variables, with the aim of seeking the change of an outcome when manipulating a variable while given a set of plausible confounding variables which affect the manipula ted variable and the outcome. Such an experiment on data to estimate the causal effect of the manipulated variable is useful for validating an experiment design using historical data or for exploring confounders when studying a new relationship. However, existing data-driven methods for causal effect estimation face some major challenges, including poor scalability with high dimensional data, low estimation accuracy due to heuristics used by the global causal structure learning algorithms, and the assumption of causal sufficiency when hidden variables are inevitable in data. In this paper, we develop a theorem for using local search to find a superset of the adjustment (or confounding) variables for causal effect estimation from observational data under a realistic pretreatment assumption. The theorem ensures that the unbiased estimate of causal effect is included in the set of causal effects estimated by the superset of adjustment variables. Based on the developed theorem, we propose a data-driven algorithm for causal query. Experiments show that the proposed algorithm is faster and produces better causal effect estimation than an existing data-driven causal effect estimation method with hidden variables. The causal effects estimated by the proposed algorithm are as accurate as those by the state-of-the-art methods using domain knowledge.
148 - Yifan Cui , Hongming Pu , Xu Shi 2020
Skepticism about the assumption of no unmeasured confounding, also known as exchangeability, is often warranted in making causal inferences from observational data; because exchangeability hinges on an investigators ability to accurately measure cova riates that capture all potential sources of confounding. In practice, the most one can hope for is that covariate measurements are at best proxies of the true underlying confounding mechanism operating in a given observational study. In this paper, we consider the framework of proximal causal inference introduced by Tchetgen Tchetgen et al. (2020), which while explicitly acknowledging covariate measurements as imperfect proxies of confounding mechanisms, offers an opportunity to learn about causal effects in settings where exchangeability on the basis of measured covariates fails. We make a number of contributions to proximal inference including (i) an alternative set of conditions for nonparametric proximal identification of the average treatment effect; (ii) general semiparametric theory for proximal estimation of the average treatment effect including efficiency bounds for key semiparametric models of interest; (iii) a characterization of proximal doubly robust and locally efficient estimators of the average treatment effect. Moreover, we provide analogous identification and efficiency results for the average treatment effect on the treated. Our approach is illustrated via simulation studies and a data application on evaluating the effectiveness of right heart catheterization in the intensive care unit of critically ill patients.
129 - Yixin Wang , David M. Blei 2019
Unobserved confounding is a major hurdle for causal inference from observational data. Confounders---the variables that affect both the causes and the outcome---induce spurious non-causal correlations between the two. Wang & Blei (2018) lower this hu rdle with the blessings of multiple causes, where the correlation structure of multiple causes provides indirect evidence for unobserved confounding. They leverage these blessings with an algorithm, called the deconfounder, that uses probabilistic factor models to correct for the confounders. In this paper, we take a causal graphical view of the deconfounder. In a graph that encodes shared confounding, we show how the multiplicity of causes can help identify intervention distributions. We then justify the deconfounder, showing that it makes valid inferences of the intervention. Finally, we expand the class of graphs, and its theory, to those that include other confounders and selection variables. Our results expand the theory in Wang & Blei (2018), justify the deconfounder for causal graphs, and extend the settings where it can be used.
Graphical causal models are an important tool for knowledge discovery because they can represent both the causal relations between variables and the multivariate probability distributions over the data. Once learned, causal graphs can be used for cla ssification, feature selection and hypothesis generation, while revealing the underlying causal network structure and thus allowing for arbitrary likelihood queries over the data. However, current algorithms for learning sparse directed graphs are generally designed to handle only one type of data (continuous-only or discrete-only), which limits their applicability to a large class of multi-modal biological datasets that include mixed type variables. To address this issue, we developed new methods that modify and combine existing methods for finding undirected graphs with methods for finding directed graphs. These hybrid methods are not only faster, but also perform better than the directed graph estimation methods alone for a variety of parameter settings and data set sizes. Here, we describe a new conditional independence test for learning directed graphs over mixed data types and we compare performances of different graph learning strategies on synthetic data.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا