ترغب بنشر مسار تعليمي؟ اضغط هنا

Track Finding at Belle II

242   0   0.0 ( 0 )
 نشر من قبل Alexander Glazov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper describes the track-finding algorithm that is used for event reconstruction in the Belle II experiment operating at the SuperKEKB B-factory in Tsukuba, Japan. The algorithm is designed to balance the requirements of a high efficiency to find charged particles with a good track parameter resolution, a low rate of spurious tracks, and a reasonable demand on CPU resources. The software is implemented in a flexible, modular manner and employs a diverse selection of global and local track-finding algorithms to achieve an optimal performance.

قيم البحث

اقرأ أيضاً

104 - W. Esmail , T. Stockmanns , 2019
We apply deep learning methods as a track finding algorithm to the PANDA Forward Tracking Stations (FTS). The problem is divided into three steps: The first step relies on an Artificial Neural Network (ANN) that is trained as a binary classifier to b uild track segments in three different parts of the FTS, namely FT1,FT2, FT3,FT4, and FT5,FT6. The ANN accepts hit pairs as an input and outputs a probability that they are on the same track or not. The second step builds 3D track segments from the 2D ones and is based on the geometry of the detector. The last step is to match the track segments from the different parts of the FTS to form a full track candidate, and is based on a Recurrent Neural Network (RNN). The RNN is used also as a binary classifier that outputs the probability that the combined track segments are a true track or not. The performance of the algorithm is judged based on the purity, efficiency and the ghost ratio of the reconstructed tracks. The purity specifies which fraction of hits in one track come from the correct particle. The correct particle is the particle, which produces the majority of hits in the track. The efficiency is defined as the ratio of the number of correctly reconstructed tracks to all generated tracks.
84 - Matthew Barrett 2013
The Belle-II experiment and superKEKB accelerator will form a next generation B-factory at KEK, capable of running at an instantaneous luminosity 40 times higher than the Belle detector and KEKB. This will allow for the elucidation of many facets of the Standard Model by performing precision measurements of its parameters, and provide sensitivity to many rare decays that are currently inaccessible. This will require major upgrades to both the accelerator and detector subsystems. The imaging Time-of-propagation (iTOP) detector will be a new subdetector of Belle-II that will perform an integral role in Particle identification (PID). It will comprise 16 modules between the tracking detectors and calorimeter; each module consisting of a quartz radiator, approximately 2.5m in length, instrumented with an array of 32 micro-channel plate photodetectors (MCP-PMTs). The passage of charged particles through the quartz will produce a cone of Cherenkov photons that will propagate along the length of the quartz, and be detected by the MCP-PMTs. The excellent spatial, and timing resolution (of 50 picoseconds) of the iTOP system will provide superior particle identification capabilities, particularly allowing for enhanced discrimination between pions and kaons that will be essential for many of the key measurements to performed. The status of the construction of the iTOP subdetector, and performance studies of prototypes at beam tests will be presented, together with prospects for physics measurements that will utilise the PID capabilities of the iTOP system.
146 - T. Abe , I. Adachi , K. Adamczyk 2010
The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a thr ee-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been proposed. A new international collaboration Belle-II, is being formed. The Technical Design Report presents physics motivation, basic methods of the accelerator upgrade, as well as key improvements of the detector.
82 - R. Giordano , Y. Lai , S. Korpar 2020
On-detector digital electronics in High-Energy Physics experiments is increasingly being implemented by means of SRAM-based FPGA, due to their capabilities of reconfiguration, real-time processing and multi-gigabit data transfer. Radiation-induced si ngle event upsets in the configuration hinder the correct operation, since they may alter the programmed routing paths and logic functions. In most trigger and data acquisition systems, data from several front-end modules are concentrated into a single board, which then transmits data to back-end electronics for acquisition and triggering. Since the front-end modules are identical, they host identical FPGAs, which are programmed with the same bitstream. In this work, we present a novel scrubber capable of correcting radiation-induced soft-errors in the configuration of SRAM-based FPGAs by majority voting across different modules. We show an application of this system to the read-out electronics of the Aerogel Ring Imaging CHerenkov (ARICH) subdetector of the Belle2 experiment at SuperKEKB of the KEK laboratory (Tsukuba, Japan). We discuss the architecture of the system and its implementation in a Virtex-5 LX50T FPGA, in the concentrator board, for correcting the configuration of up to six Spartan-6 LX45 FPGAs, on pertaining front-end modules. We discuss results from fault-injection and neutron irradiation tests at the TRIGA reactor of the Jozef Stefan Institute (Ljubljana, Slovenia) and we compare the performance of our solution to the Xilinx Soft Error Mitigation controller.
The physics goals the Belle II experiment require an exceptionally good alignment of all the components of the Belle II tracker. The Belle II tracker is composed of the DEPFET based pixel silicon detector, four layers of double sided silicon strip de tector, a low material budget drift chamber, all three operating in a solenoidal 1.5 T B field, which is affected by the final focusing system of the accelerator. Each component of these three components must be aligned with an accuracy significantly better than the point resolution of the detector that for the PXD is order of 10 microns. The Belle II alignment software is based on the Millepede II package and uses cosmics and collision data to constrain the weak modes. The performance of the alignment algorithms was tested on the phase 2 collision data collected during spring 2018. Good alignment of the vertex detector was essential to demonstrate the nano-beam collision scheme of the accelerator and check the quality of the impact parameter resolution, which is essential for time-dependent CP violation studies at the B factory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا