ترغب بنشر مسار تعليمي؟ اضغط هنا

High-fidelity Two-qubit Gates Using a MEMS-based Beam Steering System for Individual Qubit Addressing

353   0   0.0 ( 0 )
 نشر من قبل Ye Wang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a large scale trapped atomic ion quantum computer, high-fidelity two-qubit gates need to be extended over all qubits with individual control. We realize and characterize high-fidelity two-qubit gates in a system with up to 4 ions using radial modes. The ions are individually addressed by two tightly focused beams steered using micro-electromechanical system (MEMS) mirrors. We deduce a gate fidelity of 99.49(7)% in a two-ion chain and 99.30(6)% in a four-ion chain by applying a sequence of up to 21 two-qubit gates and measuring the final state fidelity. We characterize the residual errors and discuss methods to further improve the gate fidelity towards values that are compatible with fault-tolerant quantum computation.



قيم البحث

اقرأ أيضاً

138 - S. Crain , E. Mount , S. Baek 2014
The ability to individually manipulate the increasing number of qubits is one of the many challenges towards scalable quantum information processing with trapped ions. Using micro-mirrors fabricated with micro-electromechanical systems (MEMS) technol ogy, we focus laser beams on individual ions in a linear chain and steer the focal point in two dimensions. We demonstrate sequential single qubit gates on multiple $^{171}$Yb$^+$ qubits and characterize the gate performance using quantum state tomography. Our system features negligible crosstalk to neighboring ions ($< 3times 10^{-4}$), and switching speed comparable to typical single qubit gate times ($<$ 2 $mu$s).
We study the speed/fidelity trade-off for a two-qubit phase gate implemented in $^{43}$Ca$^+$ hyperfine trapped-ion qubits. We characterize various error sources contributing to the measured fidelity, allowing us to account for errors due to single-q ubit state preparation, rotation and measurement (each at the $sim0.1%$ level), and to identify the leading sources of error in the two-qubit entangling operation. We achieve gate fidelities ranging between $97.1(2)%$ (for a gate time $t_g=3.8mu$s) and $99.9(1)%$ (for $t_g=100mu$s), representing respectively the fastest and lowest-error two-qubit gates reported between trapped-ion qubits by nearly an order of magnitude in each case.
We present a tuneup protocol for qubit gates with tenfold speedup over traditional methods reliant on qubit initialization by energy relaxation. This speedup is achieved by constructing a cost function for Nelder-Mead optimization from real-time corr elation of non-demolition measurements interleaving gate operations without pause. Applying the protocol on a transmon qubit achieves 0.999 average Clifford fidelity in one minute, as independently verified using randomized benchmarking and gate set tomography. The adjustable sensitivity of the cost function allows detecting fractional changes in gate error with nearly constant signal-to-noise ratio. The restless concept demonstrated can be readily extended to the tuneup of two-qubit gates and measurement operations.
160 - W. Huang , C. H. Yang , K. W. Chan 2018
Universal quantum computation will require qubit technology based on a scalable platform, together with quantum error correction protocols that place strict limits on the maximum infidelities for one- and two-qubit gate operations. While a variety of qubit systems have shown high fidelities at the one-qubit level, superconductor technologies have been the only solid-state qubits manufactured via standard lithographic techniques which have demonstrated two-qubit fidelities near the fault-tolerant threshold. Silicon-based quantum dot qubits are also amenable to large-scale manufacture and can achieve high single-qubit gate fidelities (exceeding 99.9%) using isotopically enriched silicon. However, while two-qubit gates have been demonstrated in silicon, it has not yet been possible to rigorously assess their fidelities using randomized benchmarking, since this requires sequences of significant numbers of qubit operations ($gtrsim 20$) to be completed with non-vanishing fidelity. Here, for qubits encoded on the electron spin states of gate-defined quantum dots, we demonstrate Bell state tomography with fidelities ranging from 80% to 89%, and two-qubit randomized benchmarking with an average Clifford gate fidelity of 94.7% and average Controlled-ROT (CROT) fidelity of 98.0%. These fidelities are found to be limited by the relatively slow gate times employed here compared with the decoherence times $T_2^*$ of the qubits. Silicon qubit designs employing fast gate operations based on high Rabi frequencies, together with advanced pulsing techniques, should therefore enable significantly higher fidelities in the near future.
Near-term quantum computers are limited by the decoherence of qubits to only being able to run low-depth quantum circuits with acceptable fidelity. This severely restricts what quantum algorithms can be compiled and implemented on such devices. One w ay to overcome these limitations is to expand the available gate set from single- and two-qubit gates to multi-qubit gates, which entangle three or more qubits in a single step. Here, we show that such multi-qubit gates can be realized by the simultaneous application of multiple two-qubit gates to a group of qubits where at least one qubit is involved in two or more of the two-qubit gates. Multi-qubit gates implemented in this way are as fast as, or sometimes even faster than, the constituent two-qubit gates. Furthermore, these multi-qubit gates do not require any modification of the quantum processor, but are ready to be used in current quantum-computing platforms. We demonstrate this idea for two specific cases: simultaneous controlled-Z gates and simultaneous iSWAP gates. We show how the resulting multi-qubit gates relate to other well-known multi-qubit gates and demonstrate through numerical simulations that they would work well in available quantum hardware, reaching gate fidelities well above 99 %. We also present schemes for using these simultaneous two-qubit gates to swiftly create large entangled states like Dicke and Greenberg-Horne-Zeilinger states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا