ﻻ يوجد ملخص باللغة العربية
The ability to individually manipulate the increasing number of qubits is one of the many challenges towards scalable quantum information processing with trapped ions. Using micro-mirrors fabricated with micro-electromechanical systems (MEMS) technology, we focus laser beams on individual ions in a linear chain and steer the focal point in two dimensions. We demonstrate sequential single qubit gates on multiple $^{171}$Yb$^+$ qubits and characterize the gate performance using quantum state tomography. Our system features negligible crosstalk to neighboring ions ($< 3times 10^{-4}$), and switching speed comparable to typical single qubit gate times ($<$ 2 $mu$s).
In a large scale trapped atomic ion quantum computer, high-fidelity two-qubit gates need to be extended over all qubits with individual control. We realize and characterize high-fidelity two-qubit gates in a system with up to 4 ions using radial mode
We report on the implementation of a high fidelity universal gate-set on optical qubits based on trapped $^{88}$Sr$^+$ ions for the purpose of quantum information processing. All coherent operations were performed using a narrow linewidth diode laser
High-fidelity two-qubit entangling gates play an important role in many quantum information processing tasks and are a necessary building block for constructing a universal quantum computer. Such high-fidelity gates have been demonstrated on trapped-
We report on the characterization of heating rates and photo-induced electric charging on a microfabricated surface ion trap with integrated waveguides. Microfabricated surface ion traps have received considerable attention as a quantum information p
We demonstrate a simplified method for dissipative generation of an entangled state of two trapped-ion qubits. Our implementation produces its target state faster and with higher fidelity than previous demonstrations of dissipative entanglement gener