ﻻ يوجد ملخص باللغة العربية
The graph entropy describes the structural information of graph. Motivated by the definition of graph entropy in general graphs, the graph entropy of hypergraphs based on Laplacian degree are defined. Some results on graph entropy of simple graphs are extended to k-uniform hypergraphs. Using an edge-moving operation, the maximum and minimum graph entropy based on Laplacian degrees are determined in k-uniform hypertrees, unicyclic k-uniform hypergraphs, bicyclic k-uniform hypergraphs and k-uniform chemical hypertrees, respectively, and the corresponding extremal graphs are determined.
Let $mathcal{H}$ be a hypergraph with $n$ vertices. Suppose that $d_1,d_2,ldots,d_n$ are degrees of the vertices of $mathcal{H}$. The $t$-th graph entropy based on degrees of $mathcal{H}$ is defined as $$ I_d^t(mathcal{H}) =-sum_{i=1}^{n}left(frac{d_
A remarkable connection between the order of a maximum clique and the Lagrangian of a graph was established by Motzkin and Straus in [7]. This connection and its extensions were successfully employed in optimization to provide heuristics for the maxi
There is a remarkable connection between the maximum clique number and the Lagrangian of a graph given by T. S. Motzkin and E.G. Straus in 1965. This connection and its extensions were successfully employed in optimization to provide heuristics for t
Let $G$ be a connected uniform hypergraphs with maximum degree $Delta$, spectral radius $lambda$ and minimum H-eigenvalue $mu$. In this paper, we give some lower bounds for $Delta-lambda$, which extend the result of [S.M. Cioabu{a}, D.A. Gregory, V.
Let $Y_{3,2}$ be the $3$-uniform hypergraph with two edges intersecting in two vertices. Our main result is that any $n$-vertex 3-uniform hypergraph with at least $binom{n}{3} - binom{n-m+1}{3} + o(n^3)$ edges contains a collection of $m$ vertex-disj