ﻻ يوجد ملخص باللغة العربية
Let $G$ be a connected uniform hypergraphs with maximum degree $Delta$, spectral radius $lambda$ and minimum H-eigenvalue $mu$. In this paper, we give some lower bounds for $Delta-lambda$, which extend the result of [S.M. Cioabu{a}, D.A. Gregory, V. Nikiforov, Extreme eigenvalues of nonregular graphs, J. Combin. Theory, Ser. B 97 (2007) 483-486] to hypergraphs. Applying these bounds, we also obtain a lower bound for $Delta+mu$.
In this paper, we give some bounds for principal eigenvector and spectral radius of connected uniform hypergraphs in terms of vertex degrees, the diameter, and the number of vertices and edges.
For $0leq alpha < 1$, the $mathcal{A}_{alpha}$-spectral radius of a $k$-uniform hypergraph $G$ is defined to be the spectral radius of the tensor $mathcal{A}_{alpha}(G):=alpha mathcal{D}(G)+(1-alpha) mathcal{A}(G)$, where $mathcal{D}(G)$ and $A(G)$ a
The $p$-spectral radius of a uniform hypergraph covers many important concepts, such as Lagrangian and spectral radius of the hypergraph, and is crucial for solving spectral extremal problems of hypergraphs. In this paper, we establish a spherically
A remarkable connection between the order of a maximum clique and the Lagrangian of a graph was established by Motzkin and Straus in [7]. This connection and its extensions were successfully employed in optimization to provide heuristics for the maxi
The spectral radius (or the signless Laplacian spectral radius) of a general hypergraph is the maximum modulus of the eigenvalues of its adjacency (or its signless Laplacian) tensor. In this paper, we firstly obtain a lower bound of the spectral radi