ﻻ يوجد ملخص باللغة العربية
We characterize unmixed and Cohen-Macaulay edge-weighted edge ideals of very well-covered graphs. We also provide examples of oriented graphs which have unmixed and non-Cohen-Macaulay vertex-weighted edge ideals, while the edge ideal of their underlying graph is Cohen-Macaulay. This disproves a conjecture posed by Pitones, Reyes and Toledo.
Let C be a uniform clutter and let I=I(C) be its edge ideal. We prove that if C satisfies the packing property (resp. max-flow min-cut property), then there is a uniform Cohen-Macaulay clutter C1 satisfying the packing property (resp. max-flow min-cu
Let $D$ be a weighted oriented graph, whose underlying graph is $G$, and let $I(D)$ be its edge ideal. If $G$ has no $3$-, $5$-, or $7$-cycles, or $G$ is K{o}nig, we characterize when $I(D)$ is unmixed. If $G$ has no $3$- or $5$-cycles, or $G$ is Kon
Let $mathcal{D}$ be a weighted oriented graph and $I(mathcal{D})$ be its edge ideal. In this paper, we show that all the symbolic and ordinary powers of $I(mathcal{D})$ coincide when $mathcal{D}$ is a weighted oriented certain class of tree. Fi
Scattered over the past few years have been several occurrences of simplicial complexes whose topological behavior characterize the Cohen-Macaulay property for quotients of polynomial rings by arbitrary (not necessarily squarefree) monomial ideals. T
Let $G=(V,E)$ be a graph. If $G$ is a Konig graph or $G$ is a graph without 3-cycles and 5-cycle, we prove that the following conditions are equivalent: $Delta_{G}$ is pure shellable, $R/I_{Delta}$ is Cohen-Macaulay, $G$ is unmixed vertex decomposabl