ﻻ يوجد ملخص باللغة العربية
The Lya emitter (LAE) fraction, X_LAE, is a potentially powerful probe of the evolution of the intergalactic neutral hydrogen gas fraction. However, uncertainties in the measurement of X_LAE are still debated. Thanks to deep data obtained with MUSE, we can measure the evolution of X_LAE homogeneously over a wide redshift range of z~3-6 for UV-faint galaxies (down to M_1500~-17.75). This is significantly fainter than in former studies, and allows us to probe the bulk of the population of high-z star-forming galaxies. We construct a UV-complete photo-redshift sample following UV luminosity functions and measure the Lya emission with MUSE using the second data release from the MUSE HUDF Survey. We derive the redshift evolution of X_LAE for M_1500 in [-21.75;-17.75] for the first time with a equivalent width range EW(Lya)>=65 A and find low values of X_ LAE<~30% at z<~6. For M_1500 in [-20.25;-18.75] and EW(Lya)<~25 A, our X_LAE values are consistent with those in the literature within 1sigma at z<~5, but our median values are systematically lower than reported values over the whole redshift range. In addition, we do not find a significant dependence of X_LAE on M_1500 for EW(Lya)>~50 A at z~3-4, in contrast with previous work. The differences in X_LAE mainly arise from selection biases for Lyman Break Galaxies (LBGs) in the literature: UV-faint LBGs are more easily selected if they have strong Lya emission, hence X_LAE is biased towards higher values. Our results suggest either a lower increase of X_LAE towards z~6 than previously suggested, or even a turnover of X_LAE at z~5.5, which may be the signature of a late or patchy reionization process. We compared our results with predictions from a cosmological galaxy evolution model. We find that a model with a bursty star formation (SF) can reproduce our observed X_LAE much better than models where SF is a smooth function of time.
We provide, for the first time, robust observational constraints on the galaxy major merger fraction up to $zapprox 6$ using spectroscopic close pair counts. Deep Multi Unit Spectroscopic Explorer (MUSE) observations in the Hubble Ultra Deep Field (H
(Abridged) We investigate the Lyman $alpha$ emitter luminosity function (LAE LF) within the redshift range $2.9 leq z leq 6$ from the first instalment of the blind integral field spectroscopic survey MUSE-Wide. This initial part of the survey probes
Aims. The aim of this work is to constrain the evolution of the fraction of Lya emitters among UV selected star forming galaxies at 2<z<6, and to measure the stellar escape fraction of Lya photons over the same redshift range. Methods. We exploit the
We present a clustering analysis of a sample of 238 Ly{$alpha$}-emitters at redshift 3<z<6 from the MUSE-Wide survey. This survey mosaics extragalactic legacy fields with 1h MUSE pointings to detect statistically relevant samples of emission line gal
We present the deepest study to date of the Lya luminosity function (LF) in a blank field using blind integral field spectroscopy from MUSE. We constructed a sample of 604 Lya emitters (LAEs) across the redshift range 2.91 < z < 6.64 using automatic