ترغب بنشر مسار تعليمي؟ اضغط هنا

The MUSE Hubble Ultra Deep Field Survey VI: The Faint-End of the Lya Luminosity Function at 2.91 < z < 6.64 and Implications for Reionisation

68   0   0.0 ( 0 )
 نشر من قبل Alyssa Drake
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. B. Drake




اسأل ChatGPT حول البحث

We present the deepest study to date of the Lya luminosity function (LF) in a blank field using blind integral field spectroscopy from MUSE. We constructed a sample of 604 Lya emitters (LAEs) across the redshift range 2.91 < z < 6.64 using automatic detection software in the Hubble Ultra Deep Field. We calculate accurate total Lya fluxes capturing low surface brightness extended Lya emission now known to be a generic property of high-redshift star-forming galaxies. We simulated realistic extended LAEs to characterise the selection function of our samples, and performed flux-recovery experiments to test and correct for bias in our determination of total Lya fluxes. We find an accurate completeness correction accounting for extended emission reveals a very steep faint-end slope of the LF, alpha, down to luminosities of log10 L erg s^-1< 41.5, applying both the 1/Vmax and maximum likelihood estimators. Splitting the sample into three broad redshift bins, we see the faint-end slope increasing from -2.03+1.42-inf at z ~ 3.44 to -2.86+0.76-inf at z ~ 5.48, however no strong evolution is seen between the 68% confidence regions in L*-alpha parameter space. Using the Lya line flux as a proxy for star formation activity, and integrating the observed LFs, we find that LAEs contribution to the cosmic SFRD rises with redshift until it is comparable to that from continuum-selected samples by z ~ 6. This implies that LAEs may contribute more to the star-formation activity of the early Universe than previously thought - any additional interglactic medium correction would act to further boost the Lya luminosities. Finally, assuming fiducial values for the escape of Lya and LyC radiation, and the clumpiness of the IGM, we integrated the maximum likelihood LF at 5.00 < z < 6.64 and find we require only a small extrapolation beyond the data (< 1 dex in L) for LAEs alone to maintain an ionised IGM at z ~ 6.

قيم البحث

اقرأ أيضاً

77 - Eilat Glikman 2009
We have conducted a spectroscopic survey to find faint quasars (-26.0 < M_{1450} < -22.0) at redshifts z=3.8-5.2 in order to measure the faint end of the quasar luminosity function at these early times. Using available optical imaging data from porti ons of the NOAO Deep Wide-Field Survey and the Deep Lens Survey, we have color-selected quasar candidates in a total area of 3.76 deg^2. Thirty candidates have R <= 23 mags. We conducted spectroscopic followup for 28 of our candidates and found 23 QSOs, 21 of which are reported here for the first time, in the 3.74 < z <5.06 redshift range. We estimate our survey completeness through detailed Monte Carlo simulations and derive the first measurement of the density of quasars in this magnitude and redshift interval. We find that the binned luminosity function is somewhat affected by the K-correction used to compute the rest-frame absolute magnitude at 1450A. Considering only our R <= 23 sample, the best-fit single power-law (Phi propto L^beta) gives a faint-end slope beta = -1.6+/-0.2. If we consider our larger, but highly incomplete sample going one magnitude fainter, we measure a steeper faint-end slope -2 < beta < -2.5. In all cases, we consistently find faint-end slopes that are steeper than expected based on measurements at z ~ 3. We combine our sample with bright quasars from the Sloan Digital Sky Survey to derive parameters for a double-power-law luminosity function. Our best fit finds a bright-end slope, alpha = -2.4+/-0.2, and faint-end slope, beta = -2.3+/-0.2, without a well-constrained break luminosity. This is effectively a single power-law, with beta = -2.7+/-0.1. We use these results to place limits on the amount of ultraviolet radiation produced by quasars and find that quasars are able to ionize the intergalactic medium at these redshifts.
In this paper, we present a derivation of the rest-frame 1400A luminosity function (LF) at redshift six from a new application of the maximum likelihood method by exploring the five deepest HST/ACS fields, i.e., the HUDF, two UDF05 fields, and two GO ODS fields. We work on the latest improved data products, which makes our results more robust than those of previous studies. We use un-binned data and thereby make optimal use of the information contained in the dataset. We focus on the analysis to a magnitude limit where the completeness is larger than 50% to avoid possibly large errors in the faint end slope that are difficult to quantify. We also take into account scattering in and out of the dropout sample due to photometric errors by defining for each object a probability that it belongs to the dropout sample. We find the best fit Schechter parameters to the z~6 LF are: alpha = 1.87 +/- 0.14, M* = -20.25 +/- 0.23, and phi*=1.77^{+0.62}_{-0.49} * 10^{-3} Mpc^{-3}. Such a steep slope suggests that galaxies, especially the faint ones, are possibly the main sources of ionizing photons in the universe at redshift six. We also combine results from all studies at z~6 to reach an agreement in 95% confidence level that -20.45<M*<-20.05 and -1.90<alpha<-1.55. The luminosity density has been found not to evolve significantly between z~6 and z~5, but considerable evolution is detected from z~6 to z~3.
The Lya emitter (LAE) fraction, X_LAE, is a potentially powerful probe of the evolution of the intergalactic neutral hydrogen gas fraction. However, uncertainties in the measurement of X_LAE are still debated. Thanks to deep data obtained with MUSE, we can measure the evolution of X_LAE homogeneously over a wide redshift range of z~3-6 for UV-faint galaxies (down to M_1500~-17.75). This is significantly fainter than in former studies, and allows us to probe the bulk of the population of high-z star-forming galaxies. We construct a UV-complete photo-redshift sample following UV luminosity functions and measure the Lya emission with MUSE using the second data release from the MUSE HUDF Survey. We derive the redshift evolution of X_LAE for M_1500 in [-21.75;-17.75] for the first time with a equivalent width range EW(Lya)>=65 A and find low values of X_ LAE<~30% at z<~6. For M_1500 in [-20.25;-18.75] and EW(Lya)<~25 A, our X_LAE values are consistent with those in the literature within 1sigma at z<~5, but our median values are systematically lower than reported values over the whole redshift range. In addition, we do not find a significant dependence of X_LAE on M_1500 for EW(Lya)>~50 A at z~3-4, in contrast with previous work. The differences in X_LAE mainly arise from selection biases for Lyman Break Galaxies (LBGs) in the literature: UV-faint LBGs are more easily selected if they have strong Lya emission, hence X_LAE is biased towards higher values. Our results suggest either a lower increase of X_LAE towards z~6 than previously suggested, or even a turnover of X_LAE at z~5.5, which may be the signature of a late or patchy reionization process. We compared our results with predictions from a cosmological galaxy evolution model. We find that a model with a bursty star formation (SF) can reproduce our observed X_LAE much better than models where SF is a smooth function of time.
446 - H. Ikeda , T. Nagao , K. Matsuoka 2010
We searched for quasars that are ~ 3 mag fainter than the SDSS quasars in the redshift range 3.7 < z < 4.7 in the COSMOS field to constrain the faint end of the quasar luminosity function. Using optical photometric data, we selected 31 quasar candida tes with 22 < i < 24 at z ~ 4. We obtained optical spectra for most of these candidates using FOCAS on the Subaru telescope, and identified 8 low-luminosity quasars at z ~ 4. In order to derive the quasar luminosity function (QLF) based on our spectroscopic follow-up campaign, we estimated the photometric completeness of our quasar survey through detailed Monte Carlo simulations. Our QLF at z ~ 4 has a much shallower faint-end slope beta = -1.67^{+0.11}_{-0.17} than that obtained by other recent surveys in the same redshift. Our result is consistent with the scenario of downsizing evolution of active galactic nuclei inferred by recent optical and X-ray quasar surveys at lower redshifts.
77 - Eilat Glikman 2011
We present an updated determination of the z ~ 4 QSO luminosity function (QLF), improving the quality of the determination of the faint end of the QLF presented in Glikman et al. (2010). We have observed an additional 43 candidates from our survey sa mple, yielding one additional QSO at z = 4.23 and increasing the completeness of our spectroscopic follow-up to 48% for candidates brighter than R = 24 over our survey area of 3.76 deg2. We study the effect of using K-corrections to compute the rest-frame absolute magnitude at 1450A compared with measuring M1450 directly from the object spectra. We find a luminosity-dependent bias: template-based K-corrections overestimate the luminosity of low-luminosity QSOs, likely due to their reliance on templates derived from higher luminosity QSOs. Combining our sample with bright quasars from the Sloan Digital Sky Survey and using spectrum-based M1450 for all the quasars, we fit a double-power-law to the binned QLF. Our best fit has a bright-end slope, {alpha} = 3.3pm0.2, and faint-end slope, {beta} = 1.6(+0.8/-0.6). Our new data revise the faint-end slope of the QLF down to flatter values similar to those measured at z ~ 3. The break luminosity, though poorly constrained, is at M* = -24.1(+0.7/-1.9), approximately 1 - 1.5 mag fainter than at z ~ 3. This QLF implies that QSOs account for about half the radiation needed to ionize the IGM at these redshifts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا