ترغب بنشر مسار تعليمي؟ اضغط هنا

Unveiling the Physics of the Mutual Interactions in Paramagnets

67   0   0.0 ( 0 )
 نشر من قبل Mariano de Souza Prof. Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In real paramagnets, there is always a subtle many-body contribution to the systems energy, which can be regarded as a small effective local magnetic field $B_{loc}$. Usually, it is neglected, since it is very small when compared with thermal fluctuations and/or external magnetic fields $B$. Nevertheless, as both the temperature $T rightarrow$ 0K and $B rightarrow$ 0T, such many-body contributions become ubiquitous. Here, employing the magnetic Gruneisen parameter $Gamma_{mag}$ and entropy arguments, we report on the pivotal role played by the mutual interactions in the regime of ultra-low-$T$ and vanishing $B$. Our key results are: $i$) absence of a genuine zero-field quantum phase transition due to the presence of $B_{loc}$; $ii$) connection between the canonical definition of temperature and $Gamma_{mag}$; and $iii$) possibility of performing adiabatic magnetization by only manipulating the mutual interactions. Our findings unveil unprecedented aspects emerging from the mutual interactions.



قيم البحث

اقرأ أيضاً

Realization of semimetals with non-trivial topologies such as Dirac and Weyl semimetals, have provided a boost in the study of these quantum materials. Presence of electron correlation makes the system even more exotic due to enhanced scattering of c harge carriers, Kondo screening etc. Here, we studied the electronic properties of single crystalline, SmBi employing varied state of the art bulk measurements. Magnetization data reveals two magnetic transitions; an antiferromagnetic order with a Neel temperature of ~ 9 K and a second magnetic transition at a lower temperature (= 7 K). The electrical resistivity data shows an upturn typical of a Kondo system and the estimated Kondo temperature is found to be close to the Neel temperature. High quality of the crystal enabled us to discover signature of quantum oscillation in the magnetization data even at low magnetic field. Using a Landau level fan diagram analysis, a non-trivial Berry phase is identified for a Fermi pocket revealing the topological character in this material. These results demonstrate an unique example of the Fermiology in the antiferromagnetic state and opens up a new paradigm to explore the Dirac fermion physics in correlated topological metal via interplay of Kondo interaction, topological order and magnetism.
Using ab initio band structure and model calculations we studied magnetic properties of one of the Mn$_4$ molecular magnets (Mn4(hmp)6), where two types of the Mn ions exist: Mn3+ and Mn2+. The direct calculation of the exchange constants in the GGA+ U approximation shows that in contrast to a common belief the strongest exchange coupling is not between two Mn3+ ions (J_{bb}), but along two out of four exchange paths connecting Mn3+ and Mn2+ ions (J_{wb}). The microscopic analysis performed within the perturbation theory allowed to establish the mechanism for this largest ferromagnetic exchange constant. The charge ordering of the Mn ions results in the situation when the energy of the excited state in the exchange process is defined not by the large on-site Coulomb repulsion U, but by much smaller energy V, which stabilizes the charge ordered state. Together with strong Hunds rule coupling and specific orbital order this leads to a large ferromagnetic exchange interaction for two out of four Mn2+ --Mn3+ pairs.
364 - Junjie Li , Kai Sun , Jun Li 2020
Disentangling the primary order parameter from secondary order parameters in phase transitions is critical to the interpretation of the transition mechanisms in strongly correlated systems and quantum materials. Here we present a study of structural phase transition pathways in superionic Cu2S nanocrystals that exhibit intriguing properties. Utilizing ultrafast electron diffraction techniques sensitive in both momentum-space and the time-domain, we distinguish the dynamics of crystal symmetry breaking and lattice expansion in this system. We are able to follow the transient states along the transition pathway and so observe the dynamics of both the primary and secondary order parameters. Based on these observations we argue that the mechanism of the structural phase transition in Cu2S is dominated by the electron-phonon coupling. This mechanism advances the understanding from previous results where the focus was solely on dynamic observations of the lattice expansion.
We investigate the anisotropic nature of magnetocrystalline coupling between the crystallographic and skyrmion crystal (SKX) lattices in the chiral magnet MnSi by magnetic field-angle resolved resonant ultrasound spectroscopy. Abrupt changes are obse rved in the elastic moduli and attenuation when the magnetic field is parallel to the [011] crystallographic direction. These observations are interpreted in a phenomenological Ginzburg-Landau theory that identifies switching of the SKX orientation to be the result of an anisotropic magnetocrystalline coupling potential. Our paper sheds new light on the nature of magnetocrystalline coupling potential relevant to future spintronic applications.
We present a detailed investigation of the temperature and depth dependence of the magnetic properties of 3D topological Kondo insulator SmB6 , in particular near its surface. We find that local magnetic field fluctuations detected in the bulk are su ppressed rapidly with decreasing depths, disappearing almost completely at the surface. We attribute the magnetic excitations to spin excitons in bulk SmB6 , which produce local magnetic fields of about ~1.8 mT fluctuating on a time scale of ~60 ns. We find that the excitonic fluctuations are suppressed when approaching the surface on a length scale of 40-90 nm, accompanied by a small enhancement in static magnetic fields. We associate this length scale to the size of the excitonic state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا