ﻻ يوجد ملخص باللغة العربية
We propose a way to break symmetry in stochastic dynamics by introducing a dissipation term. We show in a specific mean-field model, that if the reversible model undergoes a phase transition of ferromagnetic type, then its dissipative counterpart exhibits periodic orbits in the thermodynamic limit.
We extend the notion of Gibbsianness for mean-field systems to the set-up of general (possibly continuous) local state spaces. We investigate the Gibbs properties of systems arising from an initial mean-field Gibbs measure by application of given loc
We consider self-avoiding walk, percolation and the Ising model with long and finite range. By means of the lace expansion we prove mean-field behavior for these models if $d>2(alphawedge2)$ for self-avoiding walk and the Ising model, and $d>3(alphaw
Particle-based stochastic reaction-diffusion (PBSRD) models are a popular approach for studying biological systems involving both noise in the reaction process and diffusive transport. In this work we derive coarse-grained deterministic partial integ
We characterize the phase space for the infinite volume limit of a ferromagnetic mean-field XY model in a random field pointing in one direction with two symmetric values. We determine the stationary solutions and detect possible phase transitions in
We study a class of Markov chains that describe reversible stochastic dynamics of a large class of disordered mean field models at low temperatures. Our main purpose is to give a precise relation between the metastable time scales in the problem to t