ﻻ يوجد ملخص باللغة العربية
We experimentally realize the spin-tensor momentum coupling (STMC) using the three ground Zeeman states coupled by three Raman laser beams in ultracold atomic system of $^{40}$K Fermi atoms. This new type of STMC consists of two bright-state bands as a regular spin-orbit coupled spin-1/2 system and one dark-state middle band. Using radio-frequency spin-injection spectroscopy, we investigate the energy band of STMC. It is demonstrated that the middle state is a dark state in the STMC system. The realized energy band of STMC may open the door for further exploring exotic quantum matters.
In this letter we address the issue how synthetic spin-orbit (SO) coupling can strongly affect three-body physics in ultracold atomic gases. We consider a system which consists of three fermionic atoms, including two spinless heavy atoms and one spin
The recent experimental realization of synthetic spin-orbit coupling (SOC) opens a new avenue for exploring novel quantum states with ultracold atoms. However, in experiments for generating two-dimensional SOC (e.g., Rashba type), a perpendicular Zee
Motivated by a recent experiment [Revelle et al. Phys. Rev. Lett. 117, 235301 (2016)] that characterized the one- to three-dimensional crossover in a spin-imbalanced ultracold gas of $^6$Li atoms trapped in a two-dimensional array of tunnel-coupled t
We propose to detect quadrupole interactions of neutral ultra-cold atoms via their induced mean-field shift. We consider a Mott insulator state of spin-polarized atoms in a two-dimensional optical square lattice. The quadrupole moments of the atoms a
The Fulde-Ferrell (FF) superfluid phase, in which fermions form finite-momentum Cooper pairings, is well studied in spin-singlet superfluids in past decades. Different from previous works that engineer the FF state in spinful cold atoms, we show that