ﻻ يوجد ملخص باللغة العربية
The Fulde-Ferrell (FF) superfluid phase, in which fermions form finite-momentum Cooper pairings, is well studied in spin-singlet superfluids in past decades. Different from previous works that engineer the FF state in spinful cold atoms, we show that the FF state can emerge in spinless Fermi gases confined in optical lattice associated with nearest-neighbor interactions. The mechanism of the spinless FF state relies on the split Fermi surfaces by tuning the chemistry potential, which naturally gives rise to finite-momentum Cooper pairings. The phase transition is accompanied by changed Chern numbers, in which, different from the conventional picture, the band gap does not close. By beyond-mean-field calculations, we find the finite-momentum pairing is more robust, yielding the system promising for maintaining the FF state at finite temperature. Finally we present the possible realization and detection scheme of the spinless FF state.
We study the superfluid properties of two-dimensional spin-population-imbalanced Fermi gases to explore the interplay between the Berezinskii-Kosterlitz-Thouless (BKT) phase transition and the possible instability towards the Fulde-Ferrell (FF) state
We propose a two-step experimental protocol to directly engineer Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states in a cold two-component Fermi gas loaded into a quasi-one-dimensional trap. First, one uses phase imprinting to create a train of domain w
We propose to detect quadrupole interactions of neutral ultra-cold atoms via their induced mean-field shift. We consider a Mott insulator state of spin-polarized atoms in a two-dimensional optical square lattice. The quadrupole moments of the atoms a
We review the concepts and the present state of theoretical studies of spin-imbalanced superfluidity, in particular the elusive Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, in the context of ultracold quantum gases. The comprehensive presentation o
We study the phase diagram in a two-dimensional Fermi gas with the synthetic spin-orbit coupling that has recently been realized experimentally. In particular, we characterize in detail the properties and the stability region of the unconventional Fu