ﻻ يوجد ملخص باللغة العربية
Photons with a helical phase front (twisted photons) can carry a discrete, in principle, unbounded amount of orbital angular momentum (OAM). Twisted single-photons have been demonstrated as a high-dimensional quantum system with information processing ability far beyond the widely used two-level qubits. To date, the generations of single-photons carrying OAM merely rely on the non-linear process in bulk crystals, e.g., spontaneous parametric down-conversion (SPDC), which unavoidably limits both the efficiency and the scalability of the source. Therefore, an on-demand OAM quantum light source on a semiconductor chip is yet illusive and highly desirable for integrated photonic quantum technologies. Here we demonstrate highly-efficient emission of twisted single-photons from solid-state quantum emitters embedded in a microring with angular gratings. The cavity QED effect allows the generations of single-photons and encoding OAM in the same nanostructure and therefore enables the realization of devices with very small footprints and great scalability. The OAM states of singe-photons are clearly identified via quantum interference of single-photons with themselves. Our device may boost the development of integrated quantum photonic devices with potential applications towards high-dimensional quantum information processing.
Highly efficient coupling of photons from nanoemitters into single-mode optical fibers is demonstrated using tapered fibers. 7.4 +/- 1.2 % of the total emitted photons from single CdSe/ZnS nanocrystals were coupled into a 300-nm-diameter tapered fibe
Single photons are an important prerequisite for a broad spectrum of quantum optical applications. We experimentally demonstrate a heralded single-photon source based on spontaneous parametric down-conversion in collinear bulk optics, and fiber-coupl
Optical quantum technologies such as quantum sensing, quantum cryptography and quantum computation all utilize properties of non-classical light, such as precise photon-number and entangled photon-pair states, to surpass technologies based on the cla
We investigate the detection of an ultra-bright single-photon source using highly efficient superconducting nanowire single-photon detectors (SNSPDs) at telecom wavelengths. Both the single-photon source and the detectors are characterized in detail.
The interaction of optical and acoustic waves via stimulated Brillouin scattering (SBS) has recently reached on-chip platforms, which has opened new fields of applications ranging from integrated microwave photonics and on-chip narrow-linewidth laser