ترغب بنشر مسار تعليمي؟ اضغط هنا

Anti-Parity-Time Symmetry in Passive Nanophotonics

149   0   0.0 ( 0 )
 نشر من قبل Heng Fan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Parity-time (PT) symmetry in non-Hermitian optical systems promises distinct optical effects and applications not found in conservative optics. Its counterpart, anti-PT symmetry, subscribes another class of intriguing optical phenomena and implies complementary techniques for exotic light manipulation. Despite exciting progress, so far anti-PT symmetry has only been realized in bulky systems or with optical gain. Here, we report an on-chip realization of non-Hermitian optics with anti-PT symmetry, by using a fully-passive, nanophotonic platform consisting of three evanescently coupled waveguides. By depositing a metal film on the center waveguide to introduce strong loss, an anti-PT system is realized. Using microheaters to tune the waveguides refractive indices, striking behaviors are observed such as equal power splitting, synchronized amplitude modulation, phase-controlled dissipation, and transition from anti-PT symmetry to its broken phase. Our results highlight exotic anti-Hermitian nanophotonics to be consolidated with conventional circuits on the same chip, whereby valuable chip devices can be created for quantum optics studies and scalable information processing.

قيم البحث

اقرأ أيضاً

Canonical quantum mechanics postulates Hermitian Hamiltonians to ensure real eigenvalues. Counterintuitively, a non-Hermitian Hamiltonian, satisfying combined parity-time (PT) symmetry, could display entirely real spectra above some phase-transition threshold. Such a counterintuitive discovery has aroused extensive theoretical interest in extending canonical quantum theory by including non-Hermitian but PT-symmetric operators in the last two decades. Despite much fundamental theoretical success in the development of PT-symmetric quantum mechanics, an experimental observation of pseudo-Hermiticity remains elusive as these systems with a complex potential seem absent in Nature. But nevertheless, the notion of PT symmetry has highly survived in many other branches of physics including optics, photonics, AMO physics, acoustics, electronic circuits, material science over the past ten years, and others, where a judicious balance of gain and loss constitutes a PT-symmetric system. Here, although we concentrate upon reviewing recent progress on PT symmetry in optical microcavity systems, we also wish to present some new results that may help to accelerate the research in the area. Such compound photonic structures with gain and loss provide a powerful platform for testing various theoretical proposals on PT symmetry, and initiate new possibilities for shaping optical beams and pulses beyond conservative structures. Throughout this article there is an effort to clearly present the physical aspects of PT-symmetry in optical microcavity systems, but mathematical formulations are reduced to the indispensable ones. Readers who prefer strict mathematical treatments should resort to the extensive list of references. Despite the rapid progress on the subject, new ideas and applications of PT symmetry using optical microcavities are still expected in the future.
168 - Peng Peng , Wanxia Cao , Ce Shen 2015
The recently-developed notion of parity-time (PT) symmetry in optical systems with a controlled gain-loss interplay has spawned an intriguing way of achieving optical behaviors that are presently unattainable with standard arrangements. In most exper imental studies so far, however, the implementations rely highly on the advances of nanotechnologies and sophisticated fabrication techniques to synthesize solid-state materials. Here, we report the first experimental demonstration of optical anti-PT symmetry, a counterpart of conventional PT symmetry, in a warm atomic-vapor cell. By exploiting rapid coherence transport via flying atoms, our scheme illustrates essential features of anti-PT symmetry with an unprecedented precision on phase-transition threshold, and substantially reduces experimental complexity and cost. This result represents a significant advance in non-Hermitian optics by bridging a firm connection with the field of atomic, molecular and optical physics, where novel phenomena and applications in quantum and nonlinear optics aided by (anti-)PT symmetry could be anticipated.
We constructed an anti-parity-time-symmetric photonic lattice by using perturbations. The results show the topological state will appear when the waveguide coupling constants $kappa_1<kappa_2$; Interestingly, a state with undefined winding numbers oc curs when $kappa_1=kappa_2$, in which the light distributes only in the wide waveguides with equal magnitude distribution. Further studies show that the edge state will be strengthened by introducing defect for the topologically non-trivial case, while it will not affect the equal intensity transmission for the topologically undefined state. Our work provides a new way to realize the topological state and equally divided light transmission and might be applicable in optical circuits and optical interconnect.
74 - Y. Yang , Yi-Pu Wang , J.W. Rao 2020
By engineering an anti-parity-time (anti-PT) symmetric cavity magnonics system with precise eigenspace controllability, we observe two different singularities in the same system. One type of singularity, the exceptional point (EP), is produced by tun ing the magnon damping. Between two EPs, the maximal coherent superposition of photon and magnon states is robustly sustained by the preserved anti-PT symmetry. The other type of singularity, arising from the dissipative coupling of two anti-resonances, is an unconventional bound state in the continuum (BIC). At the settings of BICs, the coupled system exhibits infinite discontinuities in the group delay. We find that both singularities co-exist at the equator of the Bloch sphere, which reveals a unique hybrid state that simultaneously exhibits the maximal coherent superposition and slow light capability.
The exotic physics emerging in non-Hermitian systems with balanced distributions of gain and loss has drawn a great deal of attention in recent years. These systems exhibit phase transitions and exceptional point singularities in their spectra, at wh ich eigen-values and eigen-modes coalesce and the overall dimensionality is reduced. Among several peculiar phenomena observed at exceptional points, an especially intriguing property, with relevant practical potential, consists in the inherently enhanced sensitivity to small-scale perturbations. So far, however, these principles have been implemented at the expenses of precise fabrication and tuning requirements, involving tailored nano-structured devices with controlled distributions of optical gain and loss. In this work, anti-parity-time symmetric phase transitions and exceptional point singularities are demonstrated in a single strand of standard single-mode telecommunication fibre, using a setup consisting of entirely of off-the-shelf components. Two propagating signals are amplified and coupled through stimulated Brillouin scattering, which makes the process non-Hermitian and enables exquisite control over gain and loss. Singular response to small variations around the exceptional point and topological features arising around this singularity are experimentally demonstrated with large precision, enabling robustly enhanced spectral response to small-scale changes in the Brillouin frequency shift. Our findings open exciting opportunities for the exploration of non-Hermitian phenomena over a table-top setup, with straightforward extensions to higher-order Hamiltonians and applications in quantum optics, nanophotonics and sensing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا