ﻻ يوجد ملخص باللغة العربية
The recently-developed notion of parity-time (PT) symmetry in optical systems with a controlled gain-loss interplay has spawned an intriguing way of achieving optical behaviors that are presently unattainable with standard arrangements. In most experimental studies so far, however, the implementations rely highly on the advances of nanotechnologies and sophisticated fabrication techniques to synthesize solid-state materials. Here, we report the first experimental demonstration of optical anti-PT symmetry, a counterpart of conventional PT symmetry, in a warm atomic-vapor cell. By exploiting rapid coherence transport via flying atoms, our scheme illustrates essential features of anti-PT symmetry with an unprecedented precision on phase-transition threshold, and substantially reduces experimental complexity and cost. This result represents a significant advance in non-Hermitian optics by bridging a firm connection with the field of atomic, molecular and optical physics, where novel phenomena and applications in quantum and nonlinear optics aided by (anti-)PT symmetry could be anticipated.
Non-Hermitian optical systems with parity-time (PT) symmetry have recently revealed many intriguing prospects that outperform conservative structures. The prevous works are mostly rooted in complex arrangements with controlled gain-loss interplay. He
Parity-time (PT) symmetry in non-Hermitian optical systems promises distinct optical effects and applications not found in conservative optics. Its counterpart, anti-PT symmetry, subscribes another class of intriguing optical phenomena and implies co
By engineering an anti-parity-time (anti-PT) symmetric cavity magnonics system with precise eigenspace controllability, we observe two different singularities in the same system. One type of singularity, the exceptional point (EP), is produced by tun
Non-Hermitian Hamiltonians play an important role in many branches of physics, from quantum mechanics to acoustics. In particular, the realization of PT, and more recently -- anti-PT symmetries in optical systems has proved to be of great value from
We constructed an anti-parity-time-symmetric photonic lattice by using perturbations. The results show the topological state will appear when the waveguide coupling constants $kappa_1<kappa_2$; Interestingly, a state with undefined winding numbers oc