ﻻ يوجد ملخص باللغة العربية
High-temperature reactions widely exist in nature. However, they are difficult to be characterized either experimentally or computationally. The routinely used minimum energy path (MEP) model in computational modeling of chemical reactions is not justified to describe high-temperature reactions since high-energy structures are actively involved there. In this study, using CH4 decomposition on the Cu(111) surface as an example, we systematically compare MEP results with those obtained by explicitly sampling all relevant structures via ab initio molecular dynamics (AIMD) simulations at different temperatures. Interestingly, we find that, for reactions protected by a strong steric hindrance effect, the MEP is still effectively followed even at a temperature close to the Cu melting point. In contrast, without such a protection, the flexibility of surface Cu atoms can lead to a significant free energy barrier reduction at a high temperature. Accordingly, some conclusions about graphene growth mechanisms based on MEP calculations should be revisited. Physical insights provided by this study can deepen our understanding on high-temperature surface reactions.
The free energy profile of a reaction can be estimated in a molecular-dynamics approach by imposing a mechanical constraint along a reaction coordinate (RC). Many recent studies have shown that the temperature can greatly influence the path followed
We investigate the influence of a stochastically fluctuating step-barrier potential on bimolecular reaction rates by exact analytical theory and stochastic simulations. We demonstrate that the system exhibits a new resonant reaction behavior with rat
We study the elastic scattering of slow electrons by two-atomic molecule in the frame of non-overlapping atomic potentials model. The molecular continuum wave function is represented as a combination of a plane wave and two spherical s-waves, generat
The uniaxial negative thermal expansion in pentacene crystals along $a$ is a particularity in the series of the oligoacenes, and exeptionally large for a crystalline solid. Full x-ray structure analysis from 120 K to 413 K reveals that the dominant t
There have existed for a long time a paradigm that TiO phases at ambient conditions are stable only if structural vacancies are available. Using an evolutionary algorithm, we perform an ab initio search of possible zero-temperature polymorphs of TiO