ﻻ يوجد ملخص باللغة العربية
Excitonic insulators host a condensate of electron-hole pairs at equilibrium, giving rise to collective many-body effects. Although several materials have emerged as excitonic insulator candidates, evidence of long-range coherence is lacking and the origin of the ordered phase in these systems remains controversial. Here, using ultrafast pump-probe microscopy, we investigate the possible excitonic insulator Ta$_2$NiSe$_5$. Below 328 K, we observe the anomalous micrometer-scale propagation of coherent modes at velocities of the order of $sim10^5$ m/s, which we attribute to the hybridization between phonon modes and the phase mode of the condensate. We develop a theoretical framework to support this explanation and propose that electronic interactions provide a significant contribution to the ordered phase in Ta$_2$NiSe$_5$. These results allow us to understand how the condensates collective modes transport energy and interact with other degrees of freedom. Our study provides a unique paradigm for the investigation and manipulation of these properties in strongly correlated materials.
Tuning many-body electronic phases by an external handle is of both fundamental and practical importance in condensed matter science. The tunability mirrors the underlying interactions, and gigantic electric, optical and magnetic responses to minute
We analyze the measured optical conductivity spectra using the density-functional-theory-based electronic structure calculation and density-matrix renormalization group calculation of an effective model. We show that, in contrast to a conventional de
The layered chalcogenide Ta$_{2}$NiSe$_{5}$ has been proposed to host an excitonic condensate in its ground state, a phase that could offer a unique platform to study and manipulate many-body states at room temperature. However, identifying the domin
Excitonic insulator (EI) is an intriguing insulating phase of matter, where electrons and holes are bonded into pairs, so called excitons, and form a phase-coherent state via Bose-Einstein Condensation (BEC). Its theoretical concept has been proposed
The envisioned existence of an excitonic-insulator phase in Ta$_2$NiSe$_5$ has attracted a remarkable interest in this material. The origin of the phase transition in Ta$_2$NiSe$_5$ has been rationalized in terms of crystal symmetries breaking driven