ﻻ يوجد ملخص باللغة العربية
The envisioned existence of an excitonic-insulator phase in Ta$_2$NiSe$_5$ has attracted a remarkable interest in this material. The origin of the phase transition in Ta$_2$NiSe$_5$ has been rationalized in terms of crystal symmetries breaking driven by both electronic correlation and lattice distortion. However, the role of structural and electronic effects has yet to be disentangled. Meanwhile its complementary material Ta$_2$NiS$_5$, which has the chalcogen species exchanged with Sulfur, does not show any experimental evidence of an excitonic insulating phase. Here we present a microscopic investigation of the electronic and phononic effects involved in the structural phase transition in Ta$_2$NiSe$_5$ and Ta$_2$NiS$_5$ by means of extensive first-principles calculations for both the high temperature orthorhombic and low-temperature monoclinic crystal phases. We show that, despite the difference in electronic behaviour, the structural origin of the phase transition is the same in the two crystals. In particular our first-principles results suggest, that the high temperature phase of Ta$_2$NiSe$_5$ is metallic and the structural transition to the low-temperature phase leads to the opening of an electronic gap. By analysing the phononic modes of the two phases we single out the mode responsible for the structural transition and demonstrate how this phonon mode strongly couples to the electronic structure. We demonstrate that, despite the very similar phononic behaviour, in Ta$_2$NiS$_5$ the electronic transition from metal to semiconductor is lacking and the crystal remains a semiconductor in both phases. To disentangle the effect of electronic correlation, we calculate electronic bandstructures with increasing accuracy in the electron-electron interaction and find that the structural transition alone allows for the metal to semiconductor phase transition, ...
The microscopic quantum interference associated with excitonic condensation in Ta$_2$NiSe$_5$ is studied in the BCS-type mean-field approximation. We show that in ultrasonic attenuation the coherence peak appears just below the transition temperature
We analyze the measured optical conductivity spectra using the density-functional-theory-based electronic structure calculation and density-matrix renormalization group calculation of an effective model. We show that, in contrast to a conventional de
We investigate the non-equilibrium electronic structure and characteristic time scales in a candidate excitonic insulator, Ta$_2$NiSe$_5$, using time- and angle-resolved photoemission spectroscopy with a temporal resolution of 50 fs. Following a stro
Excitonic insulator (EI) is an intriguing insulating phase of matter, where electrons and holes are bonded into pairs, so called excitons, and form a phase-coherent state via Bose-Einstein Condensation (BEC). Its theoretical concept has been proposed
In the presence of electron-phonon coupling, an excitonic insulator harbors two degenerate ground states described by an Ising-type order parameter. Starting from a microscopic Hamiltonian, we derive the equations of motion for the Ising order parame