ترغب بنشر مسار تعليمي؟ اضغط هنا

The Stellar Mass - Halo Mass Relation for Low Mass X-ray Groups at 0.5<z<1 in the CDFS with CSI

96   0   0.0 ( 0 )
 نشر من قبل Shannon Patel
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Since z~1, the stellar mass density locked in low mass groups and clusters has grown by a factor of ~8. Here we make the first statistical measurements of the stellar mass content of low mass X-ray groups at 0.5<z<1, enabling the calibration of stellar-to-halo mass scales for wide-field optical and infrared surveys. Groups are selected from combined Chandra and XMM-Newton X-ray observations in the Chandra Deep Field South (CDFS). These ultra-deep observations allow us to identify bona fide low mass groups at high redshift and enable measurements of their total halo masses. We compute aggregate stellar masses for these halos using galaxies from the Carnegie-Spitzer-IMACS (CSI) spectroscopic redshift survey. Stars comprise ~3-4% of the total mass of group halos with masses 10^{12.8}<M200/Msun<10^{13.5} (about the mass of Fornax and 1/50th the mass of Virgo). Complementing our sample with higher mass halos at these redshifts, we find that the stellar-to-halo mass ratio decreases toward higher halo masses, consistent with other work in the local and high redshift universe. The observed scatter about the stellar-halo mass relation is ~0.25 dex, which is relatively small and suggests that total group stellar mass can serve as a rough proxy for halo mass. We find no evidence for any significant evolution in the stellar-halo mass relation since z<1. Quantifying the stellar content in groups since this epoch is critical given that hierarchical assembly leads to such halos growing in number density and hosting increasing shares of quiescent galaxies.

قيم البحث

اقرأ أيضاً

We present the brightest cluster galaxies (BCGs) catalog for SPectroscoic IDentification of eROSITA Sources (SPIDERS) DR14 cluster program value-added catalog. We list the 416 BCGs identified as part of this process, along with their stellar mass, st ar formation rates, and morphological properties. We identified the BCGs based on the available spectroscopic data from SPIDERS and photometric data from SDSS. We computed stellar masses and SFRs of the BCGs on the basis of SDSS, WISE, and GALEX photometry using spectral energy distribution fitting. Morphological properties for all BCGs were derived by Sersic profile fitting using the software package SIGMA in different optical bands (g,r,i). We combined this catalog with the BCGs of galaxy groups and clusters extracted from the deeper AEGIS, CDFS, COSMOS, XMM-CFHTLS, and XMM-XXL surveys to study the stellar mass - halo mass relation using the largest sample of X-ray groups and clusters known to date. This result suggests that the mass growth of the central galaxy is controlled by the hierarchical mass growth of the host halo. We find a strong correlation between the stellar mass of BCGs and the mass of their host halos. This relation shows no evolution since z $sim$ 0.65. We measure a mean scatter of 0.21 and 0.25 for the stellar mass of BCGs in a given halo mass at low ( $0.1<z < 0.3$ ) and high ( $0.3<z<0.65$ ) redshifts, respectively. We further demonstrate that the BCG mass is covariant with the richness of the host halos in the very X-ray luminous systems. We also find evidence that part of the scatter between X-ray luminosity and richness can be reduced by considering stellar mass as an additional variable.
A large variance exists in the amplitude of the Stellar Mass - Halo Mass (SMHM) relation for group and cluster-size halos. Using a sample of 254 clusters, we show that the magnitude gap between the brightest central galaxy (BCG) and its second or fou rth brightest neighbor accounts for a significant portion of this variance. We find that at fixed halo mass, galaxy clusters with a higher magnitude gap have a higher BCG stellar mass. This relationship is also observed in semi-analytic representations of low-redshift galaxy clusters in simulations. This SMHM-magnitude gap stratification likely results from BCG growth via hierarchical mergers and may link assembly of the halo with the growth of the BCG. Using a Bayesian model, we quantify the importance of the magnitude gap in the SMHM relation using a multiplicative stretch factor, which we find to be significantly non-zero. The inclusion of the magnitude gap in the SMHM relation results in a large reduction in the inferred intrinsic scatter in the BCG stellar mass at fixed halo mass. We discuss the ramifications of this result in the context of galaxy formation models of centrals in group and cluster-sized halos.
We present evidence that AGN do not reside in ``special environments, but instead show large-scale clustering determined by the properties of their host galaxies. Our study is based on an angular cross-correlation analysis applied to X-ray selected A GN in the COSMOS and UDS fields, spanning redshifts from $zsim4.5$ to $zsim0.5$. Consistent with previous studies, we find that AGN at all epochs are on average hosted by galaxies in dark matter halos of $10^{12}-10^{13}$ M$_{odot}$, intermediate between star-forming and passive galaxies. We find, however, that the same clustering signal can be produced by inactive (i.e. non-AGN) galaxies closely matched to the AGN in spectral class, stellar mass and redshift. We therefore argue that the inferred bias for AGN lies in between the star-forming and passive galaxy populations because AGN host galaxies are comprised of a mixture of the two populations. Although AGN hosted by higher mass galaxies are more clustered than lower mass galaxies, this stellar mass dependence disappears when passive host galaxies are removed. The strength of clustering is also largely independent of AGN X-ray luminosity. We conclude that the most important property that determines the clustering in a given AGN population is the fraction of passive host galaxies. We also infer that AGN luminosity is likely not driven by environmental triggering, and further hypothesise that AGN may be a stochastic phenomenon without a strong dependence on environment.
We quantify evolution in the cluster scale stellar mass - halo mass (SMHM) relations parameters using 2323 clusters and brightest central galaxies (BCGs) over the redshift range $0.03 le z le 0.60$. The precision on inferred SMHM parameters is improv ed by including the magnitude gap ($rm m_{gap}$) between the BCG and fourth brightest cluster member (M14) as a third parameter in the SMHM relation. At fixed halo mass, accounting for $rm m_{gap}$, through a stretch parameter, reduces the SMHM relations intrinsic scatter. To explore this redshift range, we use clusters, BCGs, and cluster members identified using the Sloan Digital Sky Survey C4 and redMaPPer cluster catalogs and the Dark Energy Survey redMaPPer catalog. Through this joint analysis, we detect no systematic differences in BCG stellar mass, $rm m_{gap}$, and cluster mass (inferred from richness) between the datsets. We utilize the Pareto function to quantify each parameters evolution. We confirm prior findings of negative evolution in the SMHM relations slope (3.5$sigma$) and detect negative evolution in the stretch parameter (4.0$sigma$) and positive evolution in the offset parameter (5.8$sigma$). This observed evolution, combined with the absence of BCG growth, when stellar mass is measured within 50kpc, suggests that this evolution results from changes in the clusters $rm m_{gap}$. For this to occur, late-term growth must be in the intra-cluster light surrounding the BCG. We also compare the observed results to Illustris TNG 300-1 cosmological hydrodynamic simulations and find modest qualitative agreement. However, the simulations lack the evolutionary features detected in the real data.
The connection between dark matter halos and galactic baryons is often not well-constrained nor well-resolved in cosmological hydrodynamical simulations. Thus, Halo Occupation Distribution (HOD) models that assign galaxies to halos based on halo mass are frequently used to interpret clustering observations, even though it is well-known that the assembly history of dark matter halos is related to their clustering. In this paper we use high-resolution hydrodynamical cosmological simulations to compare the halo and stellar mass growth of galaxies in a large-scale overdensity to those in a large-scale underdensity (on scales of about 20 Mpc). The simulation reproduces assembly bias, that halos have earlier formation times in overdense environments than in underdense regions. We find that the stellar mass to halo mass ratio is larger in overdense regions in central galaxies residing in halos with masses between 10$^{11}$-10$^{12.9}$ M$_{odot}$. When we force the local density (within 2 Mpc) at z=0 to be the same for galaxies in the large-scale over- and underdensities, we find the same results. We posit that this difference can be explained by a combination of earlier formation times, more interactions at early times with neighbors, and more filaments feeding galaxies in overdense regions. This result puts the standard practice of assigning stellar mass to halos based only on their mass, rather than considering their larger environment, into question.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا