ﻻ يوجد ملخص باللغة العربية
Effectus theory is a relatively new approach to categorical logic that can be seen as an abstract form of generalized probabilistic theories (GPTs). While the scalars of a GPT are always the real unit interval [0,1], in an effectus they can form any effect monoid. Hence, there are quite exotic effectuses resulting from more pathological effect monoids. In this paper we introduce sigma-effectuses, where certain countable sums of morphisms are defined. We study in particular sigma-effectuses where unnormalized states can be normalized. We show that a non-trivial sigma-effectus with normalization has as scalars either the two-element effect monoid 0,1 or the real unit interval [0,1]. When states and/or predicates separate the morphisms we find that in the 0,1 case the category must embed into the category of sets and partial functions (and hence the category of Boolean algebras), showing that it implements a deterministic model, while in the [0,1] case we find it embeds into the category of Banach order-unit spaces and of Banach pre-base-norm spaces (satisfying additional properties), recovering the structure present in GPTs. Hence, from abstract categorical and operational considerations we find a dichotomy between deterministic and convex probabilistic models of physical theories.
Univalent homotopy type theory (HoTT) may be seen as a language for the category of $infty$-groupoids. It is being developed as a new foundation for mathematics and as an internal language for (elementary) higher toposes. We develop the theory of fac
Chu connections and back diagonals are introduced as morphisms for distributors between categories enriched in a small quantaloid $mathcal{Q}$. These notions, meaningful for closed bicategories, dualize the constructions of arrow categories and the F
These notes were originally developed as lecture notes for a category theory course. They should be well-suited to anyone that wants to learn category theory from scratch and has a scientific mind. There is no need to know advanced mathematics, nor a
Most of the methods that produce space weather forecasts are based on deterministic models. In order to generate a probabilistic forecast, a model needs to be run several times sampling the input parameter space, in order to generate an ensemble from
Doctrines are categorical structures very apt to study logics of different nature within a unified environment: the 2-category Dtn of doctrines. Modal interior operators are characterised as particular adjoints in the 2-category Dtn. We show that the