ﻻ يوجد ملخص باللغة العربية
The semantic segmentation of skin lesions is an important and common initial task in the computer aided diagnosis of dermoscopic images. Although deep learning-based approaches have considerably improved the segmentation accuracy, there is still room for improvement by addressing the major challenges, such as variations in lesion shape, size, color and varying levels of contrast. In this work, we propose the first deep semantic segmentation framework for dermoscopic images which incorporates, along with the original RGB images, information extracted using the physics of skin illumination and imaging. In particular, we incorporate information from specific color bands, illumination invariant grayscale images, and shading-attenuated images. We evaluate our method on three datasets: the ISBI ISIC 2017 Skin Lesion Segmentation Challenge dataset, the DermoFit Image Library, and the PH2 dataset and observe improvements of 12.02%, 4.30%, and 8.86% respectively in the mean Jaccard index over a baseline model trained only with RGB images.
There has been a steady increase in the incidence of skin cancer worldwide, with a high rate of mortality. Early detection and segmentation of skin lesions are crucial for timely diagnosis and treatment, necessary to improve the survival rate of pati
Semantic segmentation is an important preliminary step towards automatic medical image interpretation. Recently deep convolutional neural networks have become the first choice for the task of pixel-wise class prediction. While incorporating prior kno
Early detection and segmentation of skin lesions is crucial for timely diagnosis and treatment, necessary to improve the survival rate of patients. However, manual delineation is time consuming and subject to intra- and inter-observer variations amon
Deep neural networks (DNNs) have achieved great success in a wide variety of medical image analysis tasks. However, these achievements indispensably rely on the accurately-annotated datasets. If with the noisy-labeled images, the training procedure w
Skin lesion segmentation is a crucial step in the computer-aided diagnosis of dermoscopic images. In the last few years, deep learning based semantic segmentation methods have significantly advanced the skin lesion segmentation results. However, the