ﻻ يوجد ملخص باللغة العربية
Semantic segmentation is an important preliminary step towards automatic medical image interpretation. Recently deep convolutional neural networks have become the first choice for the task of pixel-wise class prediction. While incorporating prior knowledge about the structure of target objects has proven effective in traditional energy-based segmentation approaches, there has not been a clear way for encoding prior knowledge into deep learning frameworks. In this work, we propose a new loss term that encodes the star shape prior into the loss function of an end-to-end trainable fully convolutional network (FCN) framework. We penalize non-star shape segments in FCN prediction maps to guarantee a global structure in segmentation results. Our experiments demonstrate the advantage of regularizing FCN parameters by the star shape prior and our results on the ISBI 2017 skin segmentation challenge data set achieve the first rank in the segmentation task among $21$ participating teams.
We desgin a novel fully convolutional network architecture for shapes, denoted by Shape Fully Convolutional Networks (SFCN). 3D shapes are represented as graph structures in the SFCN architecture, based on novel graph convolution and pooling operatio
For several skin conditions such as vitiligo, accurate segmentation of lesions from skin images is the primary measure of disease progression and severity. Existing methods for vitiligo lesion segmentation require manual intervention. Unfortunately,
Multiple Sclerosis (MS) is an autoimmune disease that leads to lesions in the central nervous system. Magnetic resonance (MR) images provide sufficient imaging contrast to visualize and detect lesions, particularly those in the white matter. Quantita
In this paper, we present a conceptually simple, strong, and efficient framework for panoptic segmentation, called Panoptic FCN. Our approach aims to represent and predict foreground things and background stuff in a unified fully convolutional pipeli
The segmentation of skin lesions is a crucial task in clinical decision support systems for the computer aided diagnosis of skin lesions. Although deep learning-based approaches have improved segmentation performance, these models are often susceptib