ﻻ يوجد ملخص باللغة العربية
In 1976, Steinberg conjectured that planar graphs without $4$-cycles and $5$-cycles are $3$-colorable. This conjecture attracted numerous researchers for about 40 years, until it was recently disproved by Cohen-Addad et al. (2017). However, coloring planar graphs with restrictions on cycle lengths is still an active area of research, and the interest in this particular graph class remains. Let $G$ be a planar graph without $4$-cycles and $5$-cycles. For integers $d_1$ and $d_2$ satisfying $d_1+d_2geq8$ and $d_2geq d_1geq 2$, it is known that $V(G)$ can be partitioned into two sets $V_1$ and $V_2$, where each $V_i$ induces a graph with maximum degree at most $d_i$. Since Steinbergs Conjecture is false, a partition of $V(G)$ into two sets, where one induces an empty graph and the other induces a forest is not guaranteed. Our main theorem is at the intersection of the two aforementioned research directions. We prove that $V(G)$ can be partitioned into two sets $V_1$ and $V_2$, where $V_1$ induces a forest with maximum degree at most $3$ and $V_2$ induces a forest with maximum degree at most $4$; this is both a relaxation of Steinbergs conjecture and a strengthening of results by Sittitrai and Nakprasit (2019) in a much stronger form.
Let $mathscr{G}$ be the class of plane graphs without triangles normally adjacent to $8^{-}$-cycles, without $4$-cycles normally adjacent to $6^{-}$-cycles, and without normally adjacent $5$-cycles. In this paper, it is showed that every graph in $ma
DP-coloring is a generalization of list coloring, which was introduced by Dvov{r}{a}k and Postle [J. Combin. Theory Ser. B 129 (2018) 38--54]. Zhang [Inform. Process. Lett. 113 (9) (2013) 354--356] showed that every planar graph with neither adjacent
We show that for any colouring of the edges of the complete bipartite graph $K_{n,n}$ with 3 colours there are 5 disjoint monochromatic cycles which together cover all but $o(n)$ of the vertices. In the same situation, 18 disjoint monochromatic cycles together cover all vertices.
Lovasz (1965) characterized graphs without two vertex-disjoint cycles, which implies that such graphs have at most three vertices hitting all cycles. In this paper, we ask whether such a small hitting set exists for $S$-cycles, when a graph has no tw
For a planar graph $H$, let $operatorname{mathbf{N}}_{mathcal P}(n,H)$ denote the maximum number of copies of $H$ in an $n$-vertex planar graph. In this paper, we prove that $operatorname{mathbf{N}}_{mathcal P}(n,P_7)sim{4over 27}n^4$, $operatorname{