ترغب بنشر مسار تعليمي؟ اضغط هنا

Graphs without two vertex-disjoint $S$-cycles

114   0   0.0 ( 0 )
 نشر من قبل O-Joung Kwon
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Lovasz (1965) characterized graphs without two vertex-disjoint cycles, which implies that such graphs have at most three vertices hitting all cycles. In this paper, we ask whether such a small hitting set exists for $S$-cycles, when a graph has no two vertex-disjoint $S$-cycles. For a graph $G$ and a vertex set $S$ of $G$, an $S$-cycle is a cycle containing a vertex of $S$. We provide an example $G$ on $21$ vertices where $G$ has no two vertex-disjoint $S$-cycles, but three vertices are not sufficient to hit all $S$-cycles. On the other hand, we show that four vertices are enough to hit all $S$-cycles whenever a graph has no two vertex-disjoint $S$-cycles.



قيم البحث

اقرأ أيضاً

193 - Shengning Qiao , Bing Chen 2019
Let $ngeq 6,kgeq 0$ be two integers. Let $H$ be a graph of order $n$ with $k$ components, each of which is an even cycle of length at least $6$ and $G$ be a bipartite graph with bipartition $(X,Y)$ such that $|X|=|Y|geq n/2$. In this paper, we show t hat if the minimum degree of $G$ is at least $n/2-k+1$, then $G$ contains a subdivision of $H$. This generalized an older result of Wang.
It is conjectured that every edge-colored complete graph $G$ on $n$ vertices satisfying $Delta^{mon}(G)leq n-3k+1$ contains $k$ vertex-disjoint properly edge-colored cycles. We confirm this conjecture for $k=2$, prove several additional weaker result s for general $k$, and we establish structural properties of possible minimum counterexamples to the conjecture. We also reveal a close relationship between properly edge-colored cycles in edge-colored complete graphs and directed cycles in multi-partite tournaments. Using this relationship and our results on edge-colored complete graphs, we obtain several partial solutions to a conjecture on disjoint cycles in directed graphs due to Bermond and Thomassen.
Let $G$ be an $n$-node graph without two disjoint odd cycles. The algorithm of Artmann, Weismantel and Zenklusen (STOC17) for bimodular integer programs can be used to find a maximum weight stable set in $G$ in strongly polynomial time. Building on s tructural results characterizing sufficiently connected graphs without two disjoint odd cycles, we construct a size-$O(n^2)$ extended formulation for the stable set polytope of $G$.
Let $mathscr{G}$ be the class of plane graphs without triangles normally adjacent to $8^{-}$-cycles, without $4$-cycles normally adjacent to $6^{-}$-cycles, and without normally adjacent $5$-cycles. In this paper, it is showed that every graph in $ma thscr{G}$ is $3$-choosable. Instead of proving this result, we directly prove a stronger result in the form of weakly DP-$3$-coloring. The main theorem improves the results in [J. Combin. Theory Ser. B 129 (2018) 38--54; European J. Combin. 82 (2019) 102995]. Consequently, every planar graph without $4$-, $6$-, $8$-cycles is $3$-choosable, and every planar graph without $4$-, $5$-, $7$-, $8$-cycles is $3$-choosable. In the third section, it is proved that the vertex set of every graph in $mathscr{G}$ can be partitioned into an independent set and a set that induces a forest, which strengthens the result in [Discrete Appl. Math. 284 (2020) 626--630]. In the final section, tightness is considered.
65 - Suyun Jiang , Jin Yan 2020
Let $k$ be a positive integer. Let $G$ be a balanced bipartite graph of order $2n$ with bipartition $(X, Y)$, and $S$ a subset of $X$. Suppose that every pair of nonadjacent vertices $(x,y)$ with $xin S, yin Y$ satisfies $d(x)+d(y)geq n+1$. We show t hat if $|S|geq 2k+2$, then $G$ contains $k$ disjoint cycles covering $S$ such that each of the $k$ cycles contains at least two vertices of $S$. Here, both the degree condition and the lower bound of $|S|$ are best possible. And we also show that if $|S|=2k+1$, then $G$ contains $k$ disjoint cycles such that each of the $k$ cycles contains at least two vertices of $S$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا