ترغب بنشر مسار تعليمي؟ اضغط هنا

Scaling of quadratic and linear magnetooptic Kerr effect spectra with L2$_1$ ordering of Co$_2$MnSi Heusler compound

129   0   0.0 ( 0 )
 نشر من قبل Robin Silber
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Heusler compound Co$_2$MnSi provides a crystallographic transition from B2 to L2$_1$ structure with increasing annealing temperature $T_a$, being a model system for investigating the influence of crystallographic ordering on structural, magnetic, optic, and magnetooptic (MO) properties. Here, we present quadratic magnetooptic Kerr effect (QMOKE) spectra depending on $M^2$ in addition to the linear magnetooptic Kerr effect (LinMOKE) spectra being proportional to $M$, both in the extended visible spectral range of light from 0.8,eV to 5.5,eV. We investigated a set of Co$_2$MnSi thin films deposited on MgO(001) substrates and annealed from 300$^circ$C to 500$^circ$C. The amplitude of LinMOKE and QMOKE spectra scales linearly with $T_a$, and this effect is well pronounced at the resonant peaks below 2.0,eV of the QMOKE spectra. Furthermore, the spectra of the MO parameters, which fully describe the MO response of Co$_2$MnSi up to the second order in $M$, are obtained dependend on $T_a$. Finally, the spectra are compared to ab-initio calculations of a purely L2$_1$ ordered Co$_2$MnSi Heusler compound.



قيم البحث

اقرأ أيضاً

Co$_2$FeSi(100) films with L2$_1$ structure deposited onto MgO(100) were studied exploiting both longitudinal (LMOKE) and quadratic (QMOKE) magneto-optical Kerr effect. The films exhibit a huge QMOKE signal with a maximum contribution of up to 30 mde g, which is the largest QMOKE signal in reflection that has been measured thus far. This large value is a fingerprint of an exceptionally large spin-orbit coupling of second or higher order. The Co$_2$FeSi(100) films exhibit a rather large coercivity of 350 and 70 Oe for film thicknesses of 22 and 98 nm, respectively. Despite the fact that the films are epitaxial, they do not provide an angular dependence of the anisotropy and the remanence in excess of 1% and 2%, respectively.
The magnetooptic Kerr effect (MOKE) is a well known and handy tool to characterize ferro-, ferri- and antiferromagnetic materials. Many of the MOKE techniques employ effects solely linear in magnetization $bm{M}$. Nevertheless, a higher-order term be ing proportional to $bm{M}^2$ and called quadratic MOKE (QMOKE) can additionally contribute to the experimental data. Here, we present detailed QMOKE spectroscopy measurements in the range of 0.8 -- 5.5,eV based on a modified 8-directional method applied on ferromagnetic bcc Fe thin films grown on MgO substrates. From the measured QMOKE spectra, two further complex spectra of the QMOKE parameters $G_s$ and $2G_{44}$ are yielded. The difference between those two parameters, known as $Delta G$, denotes the strength of the QMOKE anisotropy. Those QMOKE parameters give rise to the QMOKE tensor $bm{G}$, fully describing the perturbation of the permittivity tensor in the second order in $bm{M}$ for cubic crystal structures. We further present experimental measurements of ellipsometry and linear MOKE spectra, wherefrom permittivity in the zeroth and the first order in $bm{M}$ are obtained, respectively. Finally, all those spectra are described by ab-initio calculations.
Brillouin light scattering spectroscopy from so-called standing spin waves in thin magnetic films is often used to determine the magnetic exchange constant. The data analysis of the experimentally determined spin-wave modes requires an unambiguous as signment to the correct spin wave mode orders. Often additional investigations are needed to guarantee correct assignment. This is particularly important in the case of Heusler compounds where values of the exchange constant vary substantially between different compounds. As a showcase, we report on the determination of the exchange constant (exchange stiffness constant) in Co$_2$MnSi, which is found to be $A=2.35pm0.1$ $mu$erg/cm ($D=575pm20$ meV AA$^2$), a value comparable to the value of the exchange constant of Co.
176 - J. Hamrle , S. Blomeier , O. Gaier 2006
Magnetic anisotropies and magnetization reversal properties of the epitaxial Heusler compound Co$_2$Cr$_{0.6}$Fe$_{0.4}$Al (CCFA) deposited on Fe and Cr buffer layers are studied. Both samples exhibit a growth-induced fourfold anisotropy, and magneti zation reversal occurs through the formation of stripy domains or 90 degree domains. During rotational magnetometric scans the sample deposited on Cr exhibits about 2 degree sharp peaks in the angular dependence of the coercive field, which are oriented along the hard axis directions. These peaks are a consequence of the specific domain structure appearing in this particular measurement geometry. A corresponding feature in the sample deposited on Fe is not observed.
A Co$_2$FeSi (CFS) film with L2$_1$ structure was irradiated with different fluences of 30 keV Ga$^+$ ions. Structural modifications were subsequently studied using the longitudinal (LMOKE) and quadratic (QMOKE) magneto-optical Kerr effect. Both the coercivity and the LMOKE amplitude were found to show a similar behavior upon irradiation: they are nearly constant up to ion fluences of $approx6times10^{15}$ ion/cm$^2$, while they decrease with further increasing fluences and finally vanish at a fluence of $approx9times10^{16}$ ion/cm$^2$, when the sample becomes paramagnetic. However, contrary to this behavior, the QMOKE signal nearly vanishes even for the smallest applied fluence of $3times10^{14}$ ion/cm$^2$. We attribute this reduction of the QMOKE signal to an irradiation-induced degeneration of second or higher order spin-orbit coupling, which already happens at small fluences of 30 keV Ga$^+$ ions. On the other hand, the reduction of coercivity and LMOKE signal with high ion fluences is probably caused by a reduction of the exchange interaction within the film material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا