ترغب بنشر مسار تعليمي؟ اضغط هنا

Exchangeable Input Representations for Reinforcement Learning

382   0   0.0 ( 0 )
 نشر من قبل John Mern
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Poor sample efficiency is a major limitation of deep reinforcement learning in many domains. This work presents an attention-based method to project neural network inputs into an efficient representation space that is invariant under changes to input ordering. We show that our proposed representation results in an input space that is a factor of $m!$ smaller for inputs of $m$ objects. We also show that our method is able to represent inputs over variable numbers of objects. Our experiments demonstrate improvements in sample efficiency for policy gradient methods on a variety of tasks. We show that our representation allows us to solve problems that are otherwise intractable when using naive approaches.

قيم البحث

اقرأ أيضاً

Reinforcement learning with function approximation can be unstable and even divergent, especially when combined with off-policy learning and Bellman updates. In deep reinforcement learning, these issues have been dealt with empirically by adapting an d regularizing the representation, in particular with auxiliary tasks. This suggests that representation learning may provide a means to guarantee stability. In this paper, we formally show that there are indeed nontrivial state representations under which the canonical TD algorithm is stable, even when learning off-policy. We analyze representation learning schemes that are based on the transition matrix of a policy, such as proto-value functions, along three axes: approximation error, stability, and ease of estimation. In the most general case, we show that a Schur basis provides convergence guarantees, but is difficult to estimate from samples. For a fixed reward function, we find that an orthogonal basis of the corresponding Krylov subspace is an even better choice. We conclude by empirically demonstrating that these stable representations can be learned using stochastic gradient descent, opening the door to improved techniques for representation learning with deep networks.
A major challenge in modern reinforcement learning (RL) is efficient control of dynamical systems from high-dimensional sensory observations. Learning controllable embedding (LCE) is a promising approach that addresses this challenge by embedding the observations into a lower-dimensional latent space, estimating the latent dynamics, and utilizing it to perform control in the latent space. Two important questions in this area are how to learn a representation that is amenable to the control problem at hand, and how to achieve an end-to-end framework for representation learning and control. In this paper, we take a few steps towards addressing these questions. We first formulate a LCE model to learn representations that are suitable to be used by a policy iteration style algorithm in the latent space. We call this model control-aware representation learning (CARL). We derive a loss function for CARL that has close connection to the prediction, consistency, and curvature (PCC) principle for representation learning. We derive three implementations of CARL. In the offline implementation, we replace the locally-linear control algorithm (e.g.,~iLQR) used by the existing LCE methods with a RL algorithm, namely model-based soft actor-critic, and show that it results in significant improvement. In online CARL, we interleave representation learning and control, and demonstrate further gain in performance. Finally, we propose value-guided CARL, a variation in which we optimize a weighted version of the CARL loss function, where the weights depend on the TD-error of the current policy. We evaluate the proposed algorithms by extensive experiments on benchmark tasks and compare them with several LCE baselines.
We propose a new perspective on representation learning in reinforcement learning based on geometric properties of the space of value functions. We leverage this perspective to provide formal evidence regarding the usefulness of value functions as au xiliary tasks. Our formulation considers adapting the representation to minimize the (linear) approximation of the value function of all stationary policies for a given environment. We show that this optimization reduces to making accurate predictions regarding a special class of value functions which we call adversarial value functions (AVFs). We demonstrate that using value functions as auxiliary tasks corresponds to an expected-error relaxation of our formulation, with AVFs a natural candidate, and identify a close relationship with proto-value functions (Mahadevan, 2005). We highlight characteristics of AVFs and their usefulness as auxiliary tasks in a series of experiments on the four-room domain.
Object-centric representations have recently enabled significant progress in tackling relational reasoning tasks. By building a strong object-centric inductive bias into neural architectures, recent efforts have improved generalization and data effic iency of machine learning algorithms for these problems. One problem class involving relational reasoning that still remains under-explored is multi-agent reinforcement learning (MARL). Here we investigate whether object-centric representations are also beneficial in the fully cooperative MARL setting. Specifically, we study two ways of incorporating an agent-centric inductive bias into our RL algorithm: 1. Introducing an agent-centric attention module with explicit connections across agents 2. Adding an agent-centric unsupervised predictive objective (i.e. not using action labels), to be used as an auxiliary loss for MARL, or as the basis of a pre-training step. We evaluate these approaches on the Google Research Football environment as well as DeepMind Lab 2D. Empirically, agent-centric representation learning leads to the emergence of more complex cooperation strategies between agents as well as enhanced sample efficiency and generalization.
A continual learning agent should be able to build on top of existing knowledge to learn on new data quickly while minimizing forgetting. Current intelligent systems based on neural network function approximators arguably do the opposite---they are h ighly prone to forgetting and rarely trained to facilitate future learning. One reason for this poor behavior is that they learn from a representation that is not explicitly trained for these two goals. In this paper, we propose OML, an objective that directly minimizes catastrophic interference by learning representations that accelerate future learning and are robust to forgetting under online updates in continual learning. We show that it is possible to learn naturally sparse representations that are more effective for online updating. Moreover, our algorithm is complementary to existing continual learning strategies, such as MER and GEM. Finally, we demonstrate that a basic online updating strategy on representations learned by OML is competitive with rehearsal based methods for continual learning. We release an implementation of our method at https://github.com/khurramjaved96/mrcl .

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا