ترغب بنشر مسار تعليمي؟ اضغط هنا

Contaminants removal and bacterial activity enhancement along the flow path of constructed wetland microbial fuel cells

419   0   0.0 ( 0 )
 نشر من قبل Marco Hartl
 تاريخ النشر 2020
  مجال البحث علم الأحياء
والبحث باللغة English
 تأليف Marco Hartl




اسأل ChatGPT حول البحث

Microbial fuel cells implemented in constructed wetlands (CW-MFCs), albeit a relatively new technology still under study, have shown to improve treatment efficiency of urban wastewater. So far the vast majority of CW-MFC systems investigated were designed as lab-scale systems working under rather unrealistic hydraulic conditions using synthetic wastewater. The main objective of this work was to quantify CW-MFCs performance operated under different conditions in a more realistic setup using meso-scale systems with horizontal flow fed with real urban wastewater. Operational conditions tested were organic loading rate (4.9+-1.6, 6.7+-1.4 and 13.6+-3.2 g COD/m2.day) and hydraulic regime (continuous vs intermittent feeding) as well as different electrical connections: CW control (conventional CW without electrodes), open-circuit CW-MFC (external circuit between anode and cathode not connected) and closed-circuit CW-MFC (external circuit connected). Eight horizontal subsurface flow CWs were operated for about four months. Each wetland consisted of a PVC reservoir of 0.193 m2 filled with 4/8 mm granitic riverine gravel. All wetlands had intermediate sampling points for gravel and interstitial liquid sampling. The CW-MFCs were designed as three MFCs incorporated one after the other along the flow path of the CWs. Results showed no significant differences between tested organic loading rates, hydraulic regimes or electrical connections, however, on average, systems operated in closed-circuit CW-MFC mode under continuous flow outperformed the other experimental conditions. Closed-circuit CW-MFC compared to conventional CW control systems showed around 5% and 22% higher COD and ammonium removal, respectively. Correspondingly, overall bacteria activity, as measured by the fluorescein diacetate technique, was higher (4% to 34%) in closed-circuit systems when compared to CW control systems.



قيم البحث

اقرأ أيضاً

105 - M. Hartl 2021
The removal of organic micropollutants (OMPs) has been investigated in constructed wetlands (CWs) operated as bioelectrochemical systems (BES). The operation of CWs as BES (CW-BES), either in the form of microbial fuel cells (MFC) or microbial electr olysis cells (MEC), has only been investigated in recent years. The presented experiment used CW meso-scale systems applying a realistic horizontal flow regime and continuous feeding of real urban wastewater spiked with four OMPs (pharmaceuticals), namely carbamazepine (CBZ), diclofenac (DCF), ibuprofen (IBU) and naproxen (NPX). The study evaluated the removal efficiency of conventional CW systems (CW-control) as well as CW systems operated as closed-circuit MFCs (CW-MFCs) and MECs (CW-MECs). Although a few positive trends were identified for the CW-BES compared to the CW-control (higher average CBZ, DCF and NPX removal by 10-17% in CW-MEC and 5% in CW-MFC), these proved to be not statistically significantly different. Mesoscale experiments with real wastewater could thus not confirm earlier positive effects of CW-BES found under strictly controlled laboratory conditions with synthetic wastewaters.
Microbial-Induced Carbonate Precipitation (MICP) has been explored for more than a decade as a promising soil improvement technique. However, it is still challenging to predict and control the growth rate and characteristics of CaCO3 precipitates, wh ich directly affect the engineering performance of MICP-treated soils. In this study, we employ a microfluidics-based pore scale model to observe the effect of bacterial density on the growth rate and characteristics of CaCO3 precipitates during MICP processes occurring at the sand particle scale. Results show that the precipitation rate of CaCO3 increases with bacterial density in the range between 0.6e8 and 5.2e8 cells/ml. Bacterial density also affects both the size and number of CaCO3 crystals. A low bacterial density of 0.6e8 cells/ml produced 1.1e6 crystals/ml with an average crystal volume of 8,000 um3, whereas a high bacterial density of 5.2e8 cells/ml resulted in more crystals (2.0e7 crystals/ml) but with a smaller average crystal volume of 450 um3. The produced CaCO3 crystals were stable when the bacterial density was 0.6e8 cells/ml. When the bacterial density was 4-10 times higher, the crystals were first unstable and then transformed into more stable CaCO3 crystals. This suggests that bacterial density should be an important consideration in the design of MICP protocols.
Microbial electrolysis cells (MECs) employ electroactive bacteria to perform extracellular electron transfer, enabling hydrogen generation from biodegradable substrates. In previous work, we developed and analyzed a differential-algebraic equation (D AE) model for MECs. The model resembles a chemostat with ordinary differential equations (ODEs) for concentrations of substrate, microorganisms, and an extracellular mediator involved in electron transfer. There is also an algebraic constraint for electric current and hydrogen production. Our goal is to determine the outcome of competition between methanogenic archaea and electroactive bacteria, because only the latter contribute to electric current and resulting hydrogen production. We investigate asymptotic stability in two industrially releva
Food-webs and other classes of ecological network motifs, are a means of describing feeding relationships between consumers and producers in an ecosystem. They have application across scales where they differ only in the underlying characteristics of the organisms and substrates describing the system. Mathematical modelling, using mechanistic approaches to describe the dynamic behaviour and properties of the system through sets of ordinary differential equations, has been used extensively in ecology. Models allow simulation of the dynamics of the various motifs and their numerical analysis provides a greater understanding of the interplay between the system components and their intrinsic properties. We have developed the MI-Sim software for use with MATLAB to allow a rigorous and rapid numerical analysis of several common ecological motifs. MI-Sim contains a series of the most commonly used motifs such as cooperation, competition and predation. It does not require detailed knowledge of mathematical analytical techniques and is offered as a single graphical user interface containing all input and output options. The tools available in the current version of MI-Sim include model simulation, steady- state existence and stability analysis, and basin of attraction analysis. The software includes seven ecological interaction motifs and seven growth function models. Unlike other system analysis tools, MI-Sim is designed as a simple and user-friendly tool specific to ecological population type models, allowing for rapid assessment of their dynamical and behavioural properties.
In the context of natural-based wastewater treatment technologies (such as constructed wetlands - CW) the use of a low-cost, continuous-like biosensor tool for the assessment of operational conditions is of key importance for plant management optimiz ation. The objective of the present study was to assess the potential use of constructed wetland microbial fuel cells (CW-MFC) as a domestic wastewater COD assessment tool. For the purpose of this work four lab-scale CW-MFCs were set up and fed with pre-settled domestic wastewater at different COD concentrations. Under laboratory conditions two different anodic materials were tested (graphite rods and gravel). Furthermore, a pilot-plant based experiment was also conducted to confirm the findings previously recorded for lab-scale experiments. Results showed that in spite of the low coulombic efficiencies recorded, either gravel or graphite-based anodes were suitable for the purposes of domestic wastewater COD assessment. Significant linear relationships could be established between inlet COD concentrations and CW-MFC Ecell whenever contact time was above 10 hours. Results also showed that the accuracy of the CW-MFC was greatly compromised after several weeks of operation. Pilot experiments showed that CW-MFC presents a good bio-indication response between week 3 and 7 of operation (equivalent to an accumulated organic loading between 100 and 200 g COD/m2, respectively). Main conclusion of this work is that of CW-MFC could be used as an alarm-tool for qualitative continuous influent water quality assessment rather than a precise COD assessment tool due to a loss of precision after several weeks of operation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا