ترغب بنشر مسار تعليمي؟ اضغط هنا

Local Rotation Invariance in 3D CNNs

370   0   0.0 ( 0 )
 نشر من قبل Vincent Andrearczyk
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Locally Rotation Invariant (LRI) image analysis was shown to be fundamental in many applications and in particular in medical imaging where local structures of tissues occur at arbitrary rotations. LRI constituted the cornerstone of several breakthroughs in texture analysis, including Local Binary Patterns (LBP), Maximum Response 8 (MR8) and steerable filterbanks. Whereas globally rotation invariant Convolutional Neural Networks (CNN) were recently proposed, LRI was very little investigated in the context of deep learning. LRI designs allow learning filters accounting for all orientations, which enables a drastic reduction of trainable parameters and training data when compared to standard 3D CNNs. In this paper, we propose and compare several methods to obtain LRI CNNs with directional sensitivity. Two methods use orientation channels (responses to rotated kernels), either by explicitly rotating the kernels or using steerable filters. These orientation channels constitute a locally rotation equivariant representation of the data. Local pooling across orientations yields LRI image analysis. Steerable filters are used to achieve a fine and efficient sampling of 3D rotations as well as a reduction of trainable parameters and operations, thanks to a parametric representations involving solid Spherical Harmonics (SH), which are products of SH with associated learned radial profiles.Finally, we investigate a third strategy to obtain LRI based on rotational invariants calculated from responses to a learned set of solid SHs. The proposed methods are evaluated and compared to standard CNNs on 3D datasets including synthetic textured volumes composed of rotated patterns, and pulmonary nodule classification in CT. The results show the importance of LRI image analysis while resulting in a drastic reduction of trainable parameters, outperforming standard 3D CNNs trained with data augmentation.



قيم البحث

اقرأ أيضاً

63 - Juan Liu 2021
Recently, deep learning methods have been proposed for quantitative susceptibility mapping (QSM) data processing: background field removal, field-to-source inversion, and single-step QSM reconstruction. However, the conventional padding mechanism use d in convolutional neural networks (CNNs) can introduce spatial artifacts, especially in QSM background field removal and single-step QSM which requires inference from total fields with extreme large values at the edge boundaries of volume of interest. To address this issue, we propose an improved padding technique which utilizes the neighboring valid voxels to estimate the invalid voxels of feature maps at volume boundaries in the neural networks. Studies using simulated and in-vivo data show that the proposed padding greatly improves estimation accuracy and reduces artifacts in the results in the tasks of background field removal, field-to-source inversion, and single-step QSM reconstruction.
We propose a new model for digital pathology segmentation, based on the observation that histopathology images are inherently symmetric under rotation and reflection. Utilizing recent findings on rotation equivariant CNNs, the proposed model leverage s these symmetries in a principled manner. We present a visual analysis showing improved stability on predictions, and demonstrate that exploiting rotation equivariance significantly improves tumor detection performance on a challenging lymph node metastases dataset. We further present a novel derived dataset to enable principled comparison of machine learning models, in combination with an initial benchmark. Through this dataset, the task of histopathology diagnosis becomes accessible as a challenging benchmark for fundamental machine learning research.
In this paper, we propose an efficient and effective framework to fuse hyperspectral and Light Detection And Ranging (LiDAR) data using two coupled convolutional neural networks (CNNs). One CNN is designed to learn spectral-spatial features from hype rspectral data, and the other one is used to capture the elevation information from LiDAR data. Both of them consist of three convolutional layers, and the last two convolutional layers are coupled together via a parameter sharing strategy. In the fusion phase, feature-level and decision-level fusion methods are simultaneously used to integrate these heterogeneous features sufficiently. For the feature-level fusion, three different fusion strategies are evaluated, including the concatenation strategy, the maximization strategy, and the summation strategy. For the decision-level fusion, a weighted summation strategy is adopted, where the weights are determined by the classification accuracy of each output. The proposed model is evaluated on an urban data set acquired over Houston, USA, and a rural one captured over Trento, Italy. On the Houston data, our model can achieve a new record overall accuracy of 96.03%. On the Trento data, it achieves an overall accuracy of 99.12%. These results sufficiently certify the effectiveness of our proposed model.
To accelerate deep CNN models, this paper proposes a novel spatially adaptive framework that can dynamically generate pixel-wise sparsity according to the input image. The sparse scheme is pixel-wise refined, regional adaptive under a unified importa nce map, which makes it friendly to hardware implementation. A sparse controlling method is further presented to enable online adjustment for applications with different precision/latency requirements. The sparse model is applicable to a wide range of vision tasks. Experimental results show that this method efficiently improve the computing efficiency for both image classification using ResNet-18 and super resolution using SRResNet. On image classification task, our method can save 30%-70% MACs with a slightly drop in top-1 and top-5 accuracy. On super resolution task, our method can reduce more than 90% MACs while only causing around 0.1 dB and 0.01 decreasing in PSNR and SSIM. Hardware validation is also included.
While state-of-the-art 3D Convolutional Neural Networks (CNN) achieve very good results on action recognition datasets, they are computationally very expensive and require many GFLOPs. While the GFLOPs of a 3D CNN can be decreased by reducing the tem poral feature resolution within the network, there is no setting that is optimal for all input clips. In this work, we therefore introduce a differentiable Similarity Guided Sampling (SGS) module, which can be plugged into any existing 3D CNN architecture. SGS empowers 3D CNNs by learning the similarity of temporal features and grouping similar features together. As a result, the temporal feature resolution is not anymore static but it varies for each input video clip. By integrating SGS as an additional layer within current 3D CNNs, we can convert them into much more efficient 3D CNNs with adaptive temporal feature resolutions (ATFR). Our evaluations show that the proposed module improves the state-of-the-art by reducing the computational cost (GFLOPs) by half while preserving or even improving the accuracy. We evaluate our module by adding it to multiple state-of-the-art 3D CNNs on various datasets such as Kinetics-600, Kinetics-400, mini-Kinetics, Something-Something V2, UCF101, and HMDB51.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا