ﻻ يوجد ملخص باللغة العربية
Data augmentations are important ingredients in the recipe for training robust neural networks, especially in computer vision. A fundamental question is whether neural network features encode data augmentation transformations. To answer this question, we introduce a systematic approach to investigate which layers of neural networks are the most predictive of augmentation transformations. Our approach uses features in pre-trained vision models with minimal additional processing to predict common properties transformed by augmentation (scale, aspect ratio, hue, saturation, contrast, and brightness). Surprisingly, neural network features not only predict data augmentation transformations, but they predict many transformations with high accuracy. After validating that neural networks encode features corresponding to augmentation transformations, we show that these features are encoded in the early layers of modern CNNs, though the augmentation signal fades in deeper layers.
In contrast to fully connected networks, Convolutional Neural Networks (CNNs) achieve efficiency by learning weights associated with local filters with a finite spatial extent. An implication of this is that a filter may know what it is looking at, b
Deep convolutional neural networks learn extremely powerful image representations, yet most of that power is hidden in the millions of deep-layer parameters. What exactly do these parameters represent? Recent work has started to analyse CNN represent
Modern neural networks excel at image classification, yet they remain vulnerable to common image corruptions such as blur, speckle noise or fog. Recent methods that focus on this problem, such as AugMix and DeepAugment, introduce defenses that operat
Training convolutional networks for semantic segmentation with strong (per-pixel) and weak (per-bounding-box) supervision requires a large amount of weakly labeled data. We propose two methods for selecting the most relevant data with weak supervisio
Invariance to a broad array of image corruptions, such as warping, noise, or color shifts, is an important aspect of building robust models in computer vision. Recently, several new data augmentations have been proposed that significantly improve per