ترغب بنشر مسار تعليمي؟ اضغط هنا

A Hybrid Model-based and Data-driven Approach to Spectrum Sharing in mmWave Cellular Networks

169   0   0.0 ( 0 )
 نشر من قبل Hossein Shokri Ghadikolaei
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Inter-operator spectrum sharing in millimeter-wave bands has the potential of substantially increasing the spectrum utilization and providing a larger bandwidth to individual user equipment at the expense of increasing inter-operator interference. Unfortunately, traditional model-based spectrum sharing schemes make idealistic assumptions about inter-operator coordination mechanisms in terms of latency and protocol overhead, while being sensitive to missing channel state information. In this paper, we propose hybrid model-based and data-driven multi-operator spectrum sharing mechanisms, which incorporate model-based beamforming and user association complemented by data-driven model refinements. Our solution has the same computational complexity as a model-based approach but has the major advantage of having substantially less signaling overhead. We discuss how limited channel state information and quantized codebook-based beamforming affect the learning and the spectrum sharing performance. We show that the proposed hybrid sharing scheme significantly improves spectrum utilization under realistic assumptions on inter-operator coordination and channel state information acquisition.

قيم البحث

اقرأ أيضاً

We consider a source that wishes to communicate with a destination at a desired rate, over a mmWave network where links are subject to blockage and nodes to failure (e.g., in a hostile military environment). To achieve resilience to link and node fai lures, we here explore a state-of-the-art Soft Actor-Critic (SAC) deep reinforcement learning algorithm, that adapts the information flow through the network, without using knowledge of the link capacities or network topology. Numerical evaluations show that our algorithm can achieve the desired rate even in dynamic environments and it is robust against blockage.
Spectrum sharing between wireless networks improves the efficiency of spectrum usage, and thereby alleviates spectrum scarcity due to growing demands for wireless broadband access. To improve the usual underutilization of the cellular uplink spectrum , this paper studies spectrum sharing between a cellular uplink and a mobile ad hoc networks. These networks access either all frequency sub-channels or their disjoint sub-sets, called spectrum underlay and spectrum overlay, respectively. Given these spectrum sharing methods, the capacity trade-off between the coexisting networks is analyzed based on the transmission capacity of a network with Poisson distributed transmitters. This metric is defined as the maximum density of transmitters subject to an outage constraint for a given signal-to-interference ratio (SIR). Using tools from stochastic geometry, the transmission-capacity trade-off between the coexisting networks is analyzed, where both spectrum overlay and underlay as well as successive interference cancelation (SIC) are considered. In particular, for small target outage probability, the transmission capacities of the coexisting networks are proved to satisfy a linear equation, whose coefficients depend on the spectrum sharing method and whether SIC is applied. This linear equation shows that spectrum overlay is more efficient than spectrum underlay. Furthermore, this result also provides insight into the effects of different network parameters on transmission capacities, including link diversity gains, transmission distances, and the base station density. In particular, SIC is shown to increase transmission capacities of both coexisting networks by a linear factor, which depends on the interference-power threshold for qualifying canceled interferers.
In this paper, a novel framework for normative modeling of the spectrum sensing and sharing problem in cognitive radios (CRs) as a transferable utility (TU) cooperative game is proposed. Secondary users (SUs) jointly sense the spectrum and cooperativ ely detect the primary user (PU) activity for identifying and accessing unoccupied spectrum bands. The games are designed to be balanced and super-additive so that resource allocation is possible and provides SUs with an incentive to cooperate and form the grand coalition. The characteristic function of the game is derived based on the worths of SUs, calculated according to the amount of work done for the coalition in terms of reduction in uncertainty about PU activity. According to her worth in the coalition, each SU gets a pay-off that is computed using various one-point solutions such as Shapley value, tau-value and Nucleolus. Depending upon their data rate requirements for transmission, SUs use the earned pay-off to bid for idle channels through a socially optimal Vickrey-Clarke-Groves (VCG) auction mechanism. Simulation results show that, in comparison with other resource allocation models, the proposed cooperative game-theoretic model provides the best balance between fairness, cooperation and performance in terms of data rates achieved by each SU.
Efficient millimeter wave (mmWave) beam selection in vehicle-to-infrastructure (V2I) communication is a crucial yet challenging task due to the narrow mmWave beamwidth and high user mobility. To reduce the search overhead of iterative beam discovery procedures, contextual information from light detection and ranging (LIDAR) sensors mounted on vehicles has been leveraged by data-driven methods to produce useful side information. In this paper, we propose a lightweight neural network (NN) architecture along with the corresponding LIDAR preprocessing, which significantly outperforms previous works. Our solution comprises multiple novelties that improve both the convergence speed and the final accuracy of the model. In particular, we define a novel loss function inspired by the knowledge distillation idea, introduce a curriculum training approach exploiting line-of-sight (LOS)/non-line-of-sight (NLOS) information, and we propose a non-local attention module to improve the performance for the more challenging NLOS cases. Simulation results on benchmark datasets show that, utilizing solely LIDAR data and the receiver position, our NN-based beam selection scheme can achieve 79.9% throughput of an exhaustive beam sweeping approach without any beam search overhead and 95% by searching among as few as 6 beams.
In this paper, we propose an optimization-based sparse learning approach to identify the set of most influential reactions in a chemical reaction network. This reduced set of reactions is then employed to construct a reduced chemical reaction mechani sm, which is relevant to chemical interaction network modeling. The problem of identifying influential reactions is first formulated as a mixed-integer quadratic program, and then a relaxation method is leveraged to reduce the computational complexity of our approach. Qualitative and quantitative validation of the sparse encoding approach demonstrates that the model captures important network structural properties with moderate computational load.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا