ترغب بنشر مسار تعليمي؟ اضغط هنا

Pulsar Timing Observations with Haoping Radio Telescope

58   0   0.0 ( 0 )
 نشر من قبل Jintao Luo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report pulsar timing observations carried out in L-band with NTSCs 40-meter Haoping Radio Telescope (HRT), which was constructed in 2014. The observations were carried out using the pulsar machine we developed. Timing observations toward millisecond pulsar J0437-4715 obtains a timing residual (r.m.s) of 397ns in the time span of 284 days. And our observations successfully detected Crab pulsars glitch that happened on July 23rd, 2019.

قيم البحث

اقرأ أيضاً

In order to maximize the sensitivity of pulsar timing arrays to a stochastic gravitational wave background, we present computational techniques to optimize observing schedules. The techniques are applicable to both single and multi-telescope experime nts. The observing schedule is optimized for each telescope by adjusting the observing time allocated to each pulsar while keeping the total amount of observing time constant. The optimized schedule depends on the timing noise characteristics of each individual pulsar as well as the performance of instrumentation. Several examples are given to illustrate the effects of different types of noise. A method to select the most suitable pulsars to be included in a pulsar timing array project is also presented.
We describe the procedure, nuances, issues, and choices involved in creating times-of-arrival (TOAs), residuals and error bars from a set of radio pulsar timing data. We discuss the issue of mis-matched templates, the problem that wide- bandwidth bac kends introduce, possible solutions to that problem, and correcting for offsets introduced by various observing systems.
100 - E. Cenacchi , A. Kraus , A. Orfei 2009
The study of the linear and circular polarization in AGN allows one to gain detailed information about the properties of the magnetic fields in these objects. However, especially the observation of circular polarization (CP) with single-dish radio-te lescopes is usually difficult because of the weak signals to be expected. Normally CP is derived as the (small) difference of two large numbers (LHC and RHC); hence an accurate calibration is absolutely necessary. Our aim is to improve the calibration accuracy to include the Stokes parameter V in the common single-dish polarimetric measurements, allowing a full Stokes study of the source under examination. A detailed study, up to the 2nd order, of the Mueller matrix elements in terms of cross-talk components allows us to reach the accuracy necessary to study circular polarization. The new calibration method has been applied to data taken at the 100-m Effelsberg radio-telescope during regular test observations of extragalactic sources at 2.8, 3.6, 6 and 11 cm. The D-terms in phase and amplitude appear very stable with time and the few known values of circular polarization have been confirmed. It is shown that, whenever a classical receiver and a multiplying polarimeter are available, the proposed calibration scheme allows one to include Stokes V in standard single-dish polarimetric observations as difference of two native circular outputs.
A new Bayesian method for the analysis of folded pulsar timing data is presented that allows for the simultaneous evaluation of evolution in the pulse profile in either frequency or time, along with the timing model and additional stochastic processe s such as red spin noise, or dispersion measure variations. We model the pulse profiles using `shapelets - a complete ortho-normal set of basis functions that allow us to recreate any physical profile shape. Any evolution in the profiles can then be described as either an arbitrary number of independent profiles, or using some functional form. We perform simulations to compare this approach with established methods for pulsar timing analysis, and to demonstrate model selection between different evolutionary scenarios using the Bayesian evidence. %s The simplicity of our method allows for many possible extensions, such as including models for correlated noise in the pulse profile, or broadening of the pulse profiles due to scattering. As such, while it is a marked departure from standard pulsar timing analysis methods, it has clear applications for both new and current datasets, such as those from the European Pulsar Timing Array (EPTA) and International Pulsar Timing Array (IPTA).
Pulsar timing is a technique that uses the highly stable spin periods of neutron stars to investigate a wide range of topics in physics and astrophysics. Pulsar timing arrays (PTAs) use sets of extremely well-timed pulsars as a Galaxy-scale detector with arms extending between Earth and each pulsar in the array. These challenging experiments look for correlated deviations in the pulsars timing that are caused by low-frequency gravitational waves (GWs) traversing our Galaxy. PTAs are particularly sensitive to GWs at nanohertz frequencies, which makes them complementary to other space- and ground-based detectors. In this chapter, we will describe the methodology behind pulsar timing; provide an overview of the potential uses of PTAs; and summarise where current PTA-based detection efforts stand. Most predictions expect PTAs to successfully detect a cosmological background of GWs emitted by supermassive black-hole binaries and also potentially detect continuous-wave emission from binary supermassive black holes, within the next several years.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا