ﻻ يوجد ملخص باللغة العربية
In order to maximize the sensitivity of pulsar timing arrays to a stochastic gravitational wave background, we present computational techniques to optimize observing schedules. The techniques are applicable to both single and multi-telescope experiments. The observing schedule is optimized for each telescope by adjusting the observing time allocated to each pulsar while keeping the total amount of observing time constant. The optimized schedule depends on the timing noise characteristics of each individual pulsar as well as the performance of instrumentation. Several examples are given to illustrate the effects of different types of noise. A method to select the most suitable pulsars to be included in a pulsar timing array project is also presented.
Pulsar timing arrays act to detect gravitational waves by observing the small, correlated effect the waves have on pulse arrival times at Earth. This effect has conventionally been evaluated assuming the gravitational wave phasefronts are planar acro
Pulsar timing is a technique that uses the highly stable spin periods of neutron stars to investigate a wide range of topics in physics and astrophysics. Pulsar timing arrays (PTAs) use sets of extremely well-timed pulsars as a Galaxy-scale detector
A pulsar timing array (PTA), in which observations of a large sample of pulsars spread across the celestial sphere are combined, allows investigation of global phenomena such as a background of gravitational waves or instabilities in atomic timescale
We have constructed a new timescale, TT(IPTA16), based on observations of radio pulsars presented in the first data release from the International Pulsar Timing Array (IPTA). We used two analysis techniques with independent estimates of the noise mod
The highly stable spin of neutron stars can be exploited for a variety of (astro-)physical investigations. In particular arrays of pulsars with rotational periods of the order of milliseconds can be used to detect correlated signals such as those cau