ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Task and Motion Planning for Long-Horizon Architectural Construction Planning

107   0   0.0 ( 0 )
 نشر من قبل Valentin Hartmann
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Integrating robotic systems in architectural and construction processes is of core interest to increase the efficiency of the building industry. Automated planning for such systems enables design analysis tools and facilitates faster design iteration cycles for designers and engineers. However, generic task-and-motion planning (TAMP) for long-horizon construction processes is beyond the capabilities of current approaches. In this paper, we develop a multi-agent TAMP framework for long horizon problems such as constructing a full-scale building. To this end we extend the Logic-Geometric Programming framework by sampling-based motion planning,a limited horizon approach, and a task-specific structural stability optimization that allow an effective decomposition of the task. We show that our framework is capable of constructing a large pavilion built from several hundred geometrically unique building elements from start to end autonomously.



قيم البحث

اقرأ أيضاً

Robotic assembly planning has the potential to profoundly change how buildings can be designed and created. It enables architects to explicitly account for the assembly process already during the design phase, and enables efficient building methods t hat profit from the robots different capabilities. Previous work has addressed planning of robot assembly sequences and identifying the feasibility of architectural designs. This paper extends previous work by enabling assembly planning with large, heterogeneous teams of robots. We present a scalable planning system which enables parallelization of complex task and motion planning problems by iteratively solving smaller sub-problems. Combining optimization methods to solve for manipulation constraints with a sampling-based bi-directional space-time path planner enables us to plan cooperative multi-robot manipulation with unknown arrival-times. Thus, our solver allows for completing sub-problems and tasks with differing timescales and synchronizes them effectively. We demonstrate the approach on multiple case-studies and on two long-horizon building assembly scenarios to show the robustness and scalability of our algorithm.
We present a strategy for designing and building very general robot manipulation systems involving the integration of a general-purpose task-and-motion planner with engineered and learned perception modules that estimate properties and affordances of unknown objects. Such systems are closed-loop policies that map from RGB images, depth images, and robot joint encoder measurements to robot joint position commands. We show that following this strategy a task-and-motion planner can be used to plan intelligent behaviors even in the absence of a priori knowledge regarding the set of manipulable objects, their geometries, and their affordances. We explore several different ways of implementing such perceptual modules for segmentation, property detection, shape estimation, and grasp generation. We show how these modules are integrated within the PDDLStream task and motion planning framework. Finally, we demonstrate that this strategy can enable a single system to perform a wide variety of real-world multi-step manipulation tasks, generalizing over a broad class of objects, object arrangements, and goals, without any prior knowledge of the environment and without re-training.
Long-horizon planning in realistic environments requires the ability to reason over sequential tasks in high-dimensional state spaces with complex dynamics. Classical motion planning algorithms, such as rapidly-exploring random trees, are capable of efficiently exploring large state spaces and computing long-horizon, sequential plans. However, these algorithms are generally challenged with complex, stochastic, and high-dimensional state spaces as well as in the presence of narrow passages, which naturally emerge in tasks that interact with the environment. Machine learning offers a promising solution for its ability to learn general policies that can handle complex interactions and high-dimensional observations. However, these policies are generally limited in horizon length. Our approach, Broadly-Exploring, Local-policy Trees (BELT), merges these two approaches to leverage the strengths of both through a task-conditioned, model-based tree search. BELT uses an RRT-inspired tree search to efficiently explore the state space. Locally, the exploration is guided by a task-conditioned, learned policy capable of performing general short-horizon tasks. This task space can be quite general and abstract; its only requirements are to be sampleable and to well-cover the space of useful tasks. This search is aided by a task-conditioned model that temporally extends dynamics propagation to allow long-horizon search and sequential reasoning over tasks. BELT is demonstrated experimentally to be able to plan long-horizon, sequential trajectories with a goal conditioned policy and generate plans that are robust.
We present an integrated Task-Motion Planning (TMP) framework for navigation in large-scale environments. Of late, TMP for manipulation has attracted significant interest resulting in a proliferation of different approaches. In contrast, TMP for navi gation has received considerably less attention. Autonomous robots operating in real-world complex scenarios require planning in the discrete (task) space and the continuous (motion) space. In knowledge-intensive domains, on the one hand, a robot has to reason at the highest-level, for example, the objects to procure, the regions to navigate to in order to acquire them; on the other hand, the feasibility of the respective navigation tasks have to be checked at the execution level. This presents a need for motion-planning-aware task planners. In this paper, we discuss a probabilistically complete approach that leverages this task-motion interaction for navigating in large knowledge-intensive domains, returning a plan that is optimal at the task-level. The framework is intended for motion planning under motion and sensing uncertainty, which is formally known as belief space planning. The underlying methodology is validated in simulation, in an office environment and its scalability is tested in the larger Willow Garage world. A reasonable comparison with a work that is closest to our approach is also provided. We also demonstrate the adaptability of our approach by considering a building floor navigation domain. Finally, we also discuss the limitations of our approach and put forward suggestions for improvements and future work.
Robotic planning problems in hybrid state and action spaces can be solved by integrated task and motion planners (TAMP) that handle the complex interaction between motion-level decisions and task-level plan feasibility. TAMP approaches rely on domain -specific symbolic operators to guide the task-level search, making planning efficient. In this work, we formalize and study the problem of operator learning for TAMP. Central to this study is the view that operators define a lossy abstraction of the transition model of a domain. We then propose a bottom-up relational learning method for operator learning and show how the learned operators can be used for planning in a TAMP system. Experimentally, we provide results in three domains, including long-horizon robotic planning tasks. We find our approach to substantially outperform several baselines, including three graph neural network-based model-free approaches from the recent literature. Video: https://youtu.be/iVfpX9BpBRo Code: https://git.io/JCT0g
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا